

Solar Pumping

Introduction to the Technology and practical considerations for its deployment

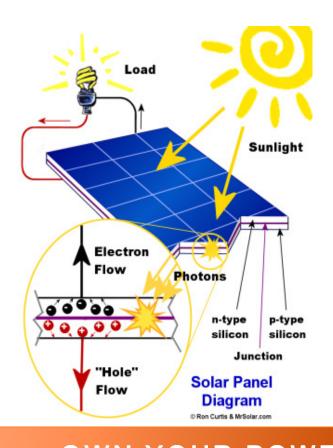
Expert Workshop on Solar Pumping: An emerging market and Major Driver for sustainable Energy and Jobs

By:

Eng. Ossama Ghoneim

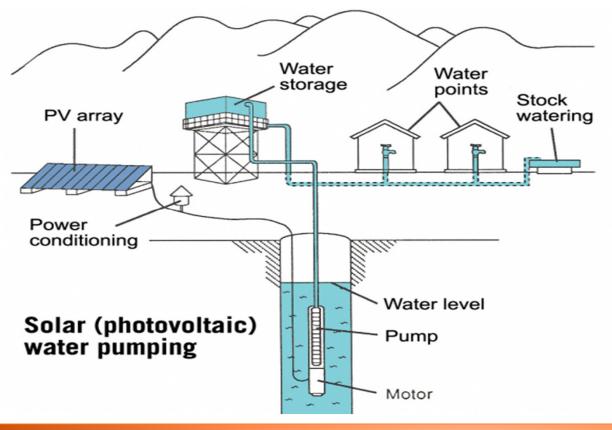
B.Sc. in Mechanical Power Engineering. Helwan University 1995.

Managing Director & Founder of GTS


Green Tech Solutions

for power generation (SAE)

How Does it Work?


PV modules converts sunshine into electricity in the form of Direct Current (DC).

As long as we have a DC, we can convert it to whatsoever form of electricity we can imagine, boosting the voltage, converting it into Alternating current (AC), changing the frequency .. etc

System Configuration

Main System Components:

- 1) PV Array
- 2) Power Conditioner (Inverter or DC Controller)
- 3) Electric driven Pump
- 4) Storage Tank (Optional) shall be discussed in Good Practices
- 5) Mounting Structure (Fixed, Single Axis Tracker and Dual Axis Tracker)
- 6) BOS (DC, AC cables, MC4, Conduits, Fuses, Circuit breakers, Combiner boxes .. Etc)

Green Tech Solutions

for power generation (SAE)

Types of Pumps

Deep well Submersible pumps
Surface centrifugal pumps
Small Fountain pumps

Any electrically driven pump

We run an electric motor after all

Green Tech Solutions

for power generation (SAE)

Types of Pumps

DC Motor Pump Vs AC Motor Pump

Advantages:

- Higher efficiency due to less conversion.
- DC motors are usually higher in efficiency

Disadvantages:

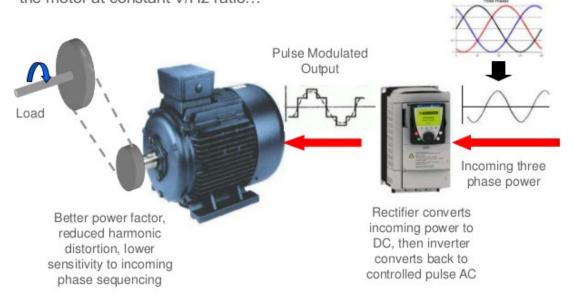
- Limited capacity due to market availability (usually from very little watts up to 7.5 HP)
- Higher initial price for DC motor itself (could be compensated by the higher efficiency)
- DC motors are usually harder to maintain and cost more for repair and maintenance

Advantages:

- Broader range of products from ½ HP up to 750 HP
- More common for farmers and irrigation applications, and its maintenance and repair is a common practice for them.
- Cheaper motor price.

Disadvantages:

- More losses due to energy conversion from DC to AC.
- AC motor are usually less efficient than their DC motor counterpart.

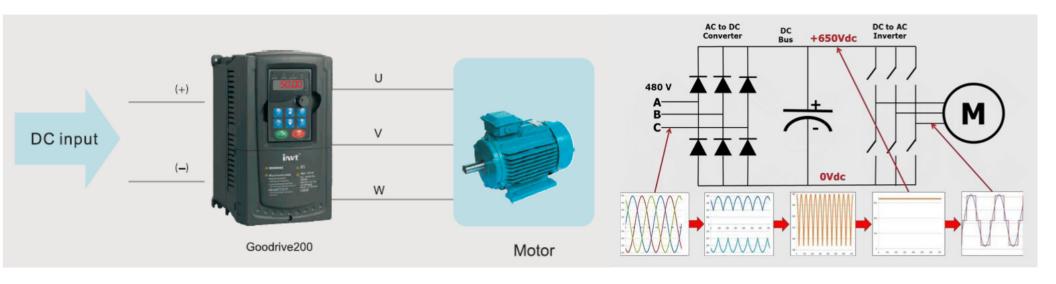


VFD Technology

Variable Frequency Drives Overview

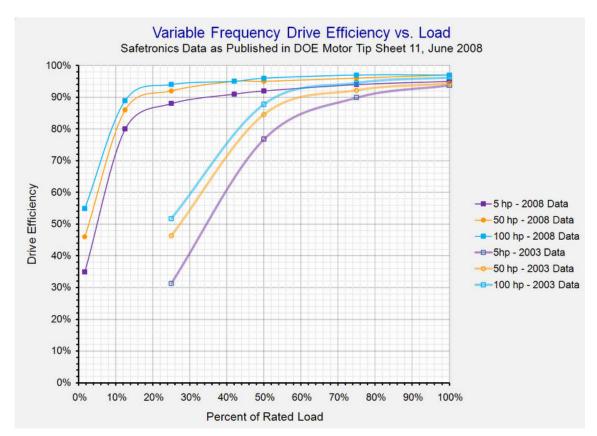
Using Variable Frequency Drives

•When connected to an AC motor, the drive delivers controlled power to the motor at constant V/Hz ratio...



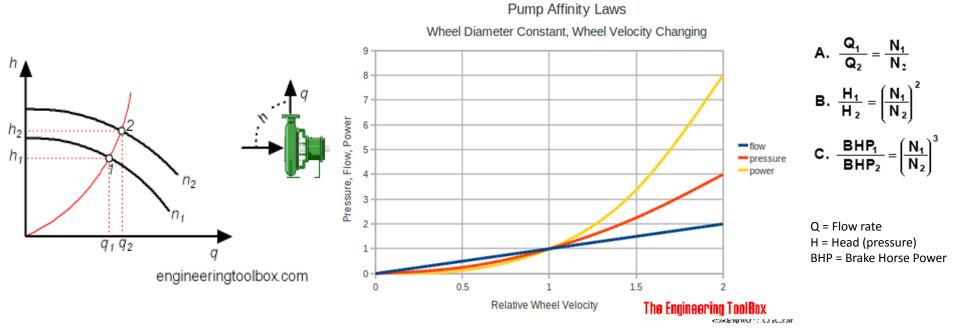
Driving an AC motor by DC power coming from the PV array is achieved by applying the VFD technology. The main difference between normal VFD and Solar Pump Inverters is that, the solar pump inverter has a unique algorithm or method to control the output frequency based on the input power.

Also most of the solar pump inverters have another algorithm dedicated to track the PV maximum power point (MPPT) as it varies all through the day and from season to season depending on temperature and sunshine irradiance.


VFD Technology

VFD's could be supplied directly with DC to convert the DC power into controlled pulse AC power with the required Frequency (Hz)

VFD Technology

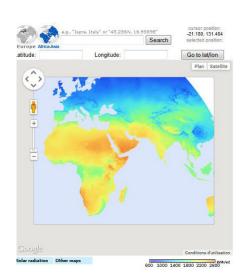


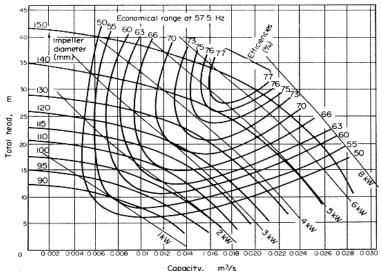
VFD is a mature enough technology, it has many applications in HVAC, Industrial Automation, Cranes, Elevators, escalators ..etc. and it has a benefit of energy saving when applied to applications with variable load / torque like fans and pumps.

Conversion efficiency has improved a lot during the past decade, now it reaches up to 98% for AC Powered VFD, i.e: near 99% for DC Powered VFD.

Variable speed Pump performance

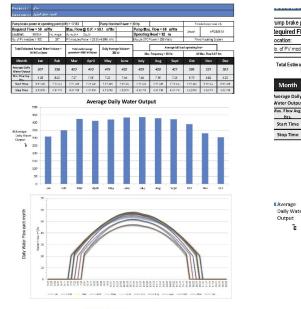
At 80% of the motor rated speed, we get 80% of the rated flow while using only 51.2% of the nominal power.


http://www.engineeringtoolbox.com/affinity-laws-d_408.html

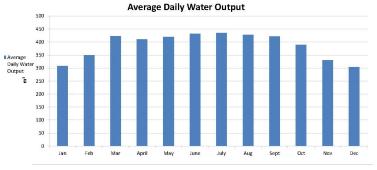


Performance calculations

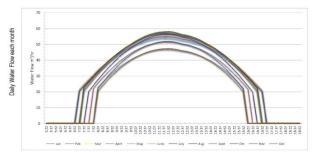
Daily pumped volume of water could be predicted based on solar irradiance databases for specific locations to estimate the hourly generated power from a PV system and the hydraulic pump curves and published performance data.



Many companies have developed their own tool to estimate the output of a PV pumping system, in addition to many international software developers like PVSYST and other inverter manufacturers.


Green Tech Solutions

Output Sample

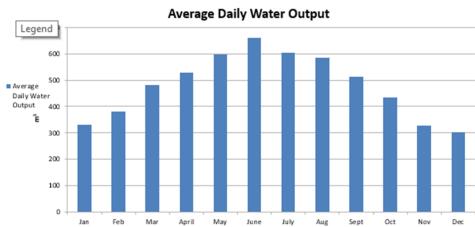


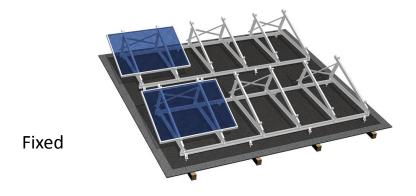
ump brake power at oper	rating point (k	W) = 17.83	Pump Nominal Po	wer = 29 hp		Forsek	ection purposes only:	
equired Flow = 50 n	n³/hr	Max. Flow@	0 O.P. = 58.1 m³/hr	Pump Max. Flo	w = 60 m³/hr	Model:	KPS646-15	
ocation: MINYA	Inc. Angle	Azimuth = S	South	Operating Head = 92 m		///cder:	NP3040-15	
o. of PV modules = 100	25°	PV modules Po	ower = 26.5 (+4.99% kW)	Module STC Power	= 265 Watts	Fixed	Mounting System	

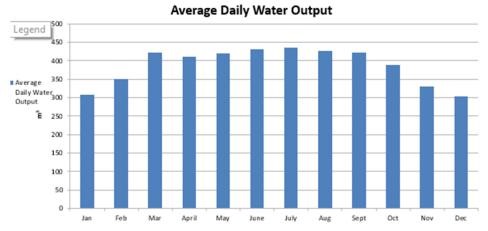
Total Estimated Annual Water Volume = 141447 m³/year		Total useful energy generated= 48887 kWhlyear		Daily Average Volume= 388 m²			A	verage full loa	d operating hi	\$=		
						Max. Frequency = 50 Hz		Of Max. Flow 6.67		hrs		
Month	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
verage Daily Vater Output	307	350	423	410	419	432	435	428	421	389	331	303
Max. Flow Avg. Hrs.	5.29	6.02	7.27	7.06	7.22	7.44	7.48	7.36	7.25	6.70	5.69	5.22
Start Time	8:07 AM	7:52 AM	7:22 AM	7:22 AM	7:07 AM	7:07 AM	7:07 AM	7:22 AM	7:22 AM	7:37 AM	8:07 AM	8:07 AM
Stop Time	3:52 PM	4:07 PM	4:37 PM	4:37 PM	4:52 PM	4:52 PM	4:52 PM	4:37 PM	4:37 PM	4:22 PM	3:52 PM	3.52 PM

Total Estimated	l Annual Wate 1447 m³ <i>l</i> year	r Volume =		ful energy 8887 kWh <i>l</i> year	Daily Average Volume= 388 m³		
Month	Jan	Feb	Mar	April	May	June	
Average Daily Water Output	307	350	423	410	419	432	
Max. Flow Avg. Hrs.	5.29	6.02	7.27	7.06	7.22	7.44	
Start Time	8:07 AM	7:52 AM	7:22 AM	7:22 AM	7:07 AM	7:07 AM	
Stop Time	3:52 PM	4:07 PM	4:37 PM	4:37 PM	4:52 PM	4:52 PM	

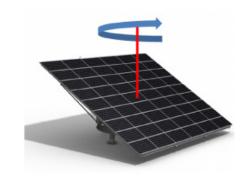
We need to show how would a specific pump perform under some certain conditions when powered by certain amount of PV modules

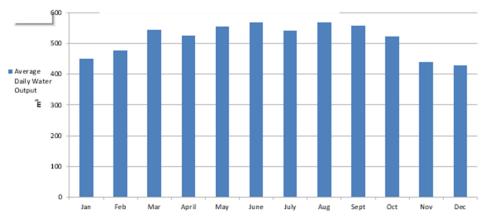


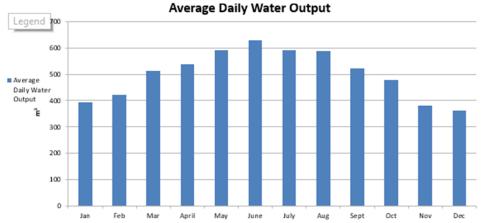

Green Tech Solutions


for power generation (SAE)

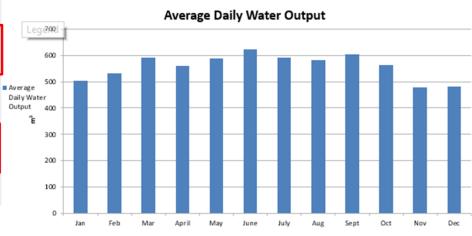
Mounting Structure


Green Tech Solutions


for power generation (SAE)


Mounting Structure

Vertical Axis Rotating
Structure



Mounting Structure

Comparison between different structures

Church up True	Annual Average	Peak (In June)	Cont	Damada
Structure Type		Volume /day	Cost	Remarks
Fixed	388	435	Low	
Horizontal Single Axis Tracker	480	630	Moderate	
Inclined Single Axis Tracker	515	565	High	
Vertical Axis Rotating Structure	501	625	Moderate - High	Suitable for manual tracking
Dual Axis Tracker	558	635	Highest	



Daily Water Needs for irrigation (Olives Tree as an Example)

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sacramento Valley	inches/ month	0.92	1.22	2.14	3.41	4.60	5.51	6.36	5.47	4.07	2.69	1.19	0.75
	gal/acre/day	801	1178	1872	3089	4027	4983	5571	4789	3686	2352	1079	657
San Joaquin Valley	inches/ month	0.78	1.22	2.49	3.68	5.00	5.81	6.35	5.51	4.09	2.60	1.12	0.60
	gal/acre/day	683	1186	2181	3333	4375	5261	5564	4822	3700	2280	1011	526

Source: University of California.

http://ucmanagedrought.ucdavis.edu/Agriculture/Crop_Irrigation_Strategies/Olives/

Average daily water output for HSAT

Green Tech Solutions

for power generation (SAE)

Storage Tank (Optional)

Advantages:

- 1- Enable farmers to irrigate any time, day or night.
- 2- Can store reserve amount of water for irrigation during cloudy days or in case of emergency.
- 3- More water output due to lower head pressure on the solar pump.
- 4- Longer pump lifetime due to lower operating pressure and less friction and wear of the pump moving parts
- 5- Makes it possible to control the flow and pressure by using a smaller pump to pressurize the dripping network
- 6- Can be used to grow fish which creates an additional source of income for the farm and the waste of the fishes would create natural fertilizer for the plants

Storage Tank (Optional)

Disadvantages:

- 1- Extra initial cost
- 2- Needs another source of energy, usually a smaller surface pump running by diesel genset to run it at night

Advantages of Solar Pumping

Energy Independence

Can be applied Wherever the Sun shines

Energy Security

No Price hikes, no inflation, no supply shortage

Environmental Friendly

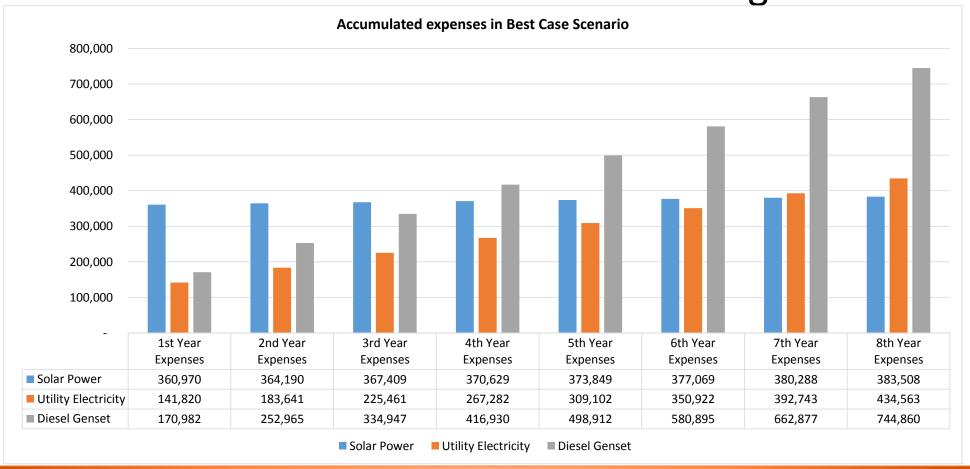
No pollution, no CO2 emissions, low carbon footprint

More profitable for serious investors

Reasonable payback period and the more your system gets older, the lower the cost of the energy you get.

Easier to operate and maintain

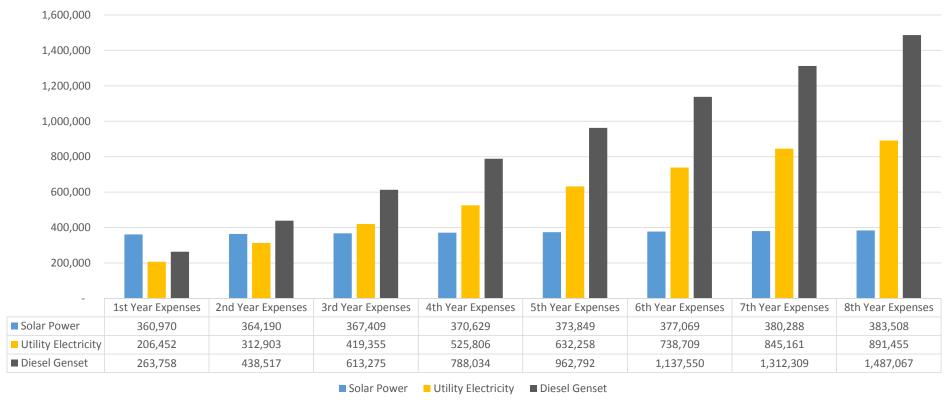
Automatic and manual running mode, could be monitored and controlled over the internet or GPRS, very low maintenance work needed


Comparison of the economics of 25 kW Solar System vs Diesel Genset and Utility electricity for 25 HP Solar Pump

Energy Source	Solar Pumping	Utility Electricity Medium Voltage Subscriber	Diesel Genset	Unit		
Initial Cost (LE)	357,750	100,000	89,000.00	LE		
Running Cost Calculations						
Diesel Oil (Today's Price)		2.35		LE/Litre		
Diesel Oil (No Subsidy - Estimated)		6				
Electricity (Today's Price)		0.52 + 45 LE/kW Peak Power				
Electricity (No Subsidy - Estimated)		1.85		LE/kWh		
Average running Hrs / day		8.61				
Power Consumption						
Diesel Oil		8.10		Liters/Hr		
Electricity		17.83		kW		
Daily Running Cost from Energy Consumpti	on perspective					
With Subsidies		106.58	163.99	LE/Day		
W/O Subsidies		284.01	418.69	LE/Day		
Annual Running Cost						
With Subsidies		38,820.4	59,732.4	LE/year		
W/O Subsidies		103,451.5	152,508.4	LE/year		
Expected Annual Maintenance and Repair Co	ost					
O&M Cost	3,219.8	3,000.0	22,250.0	LE/year		

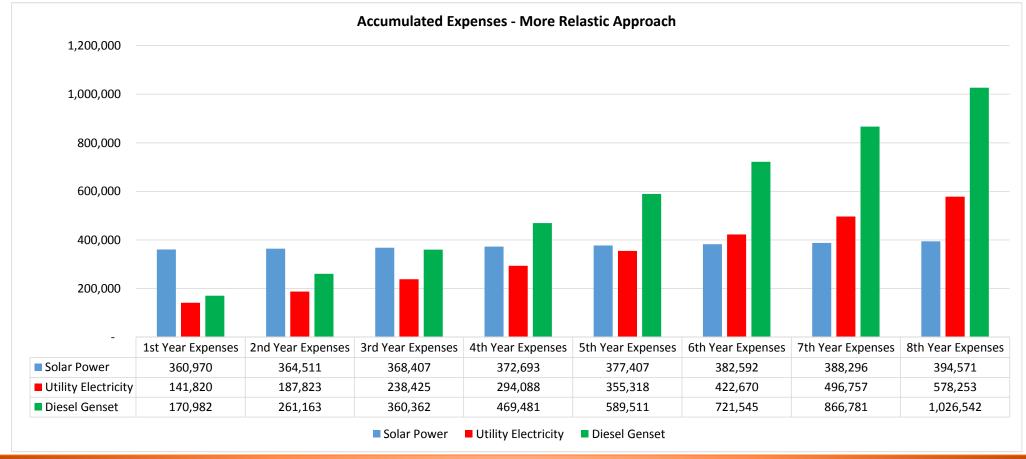
Green Tech Solutions

1st Scenario – Prices will not change



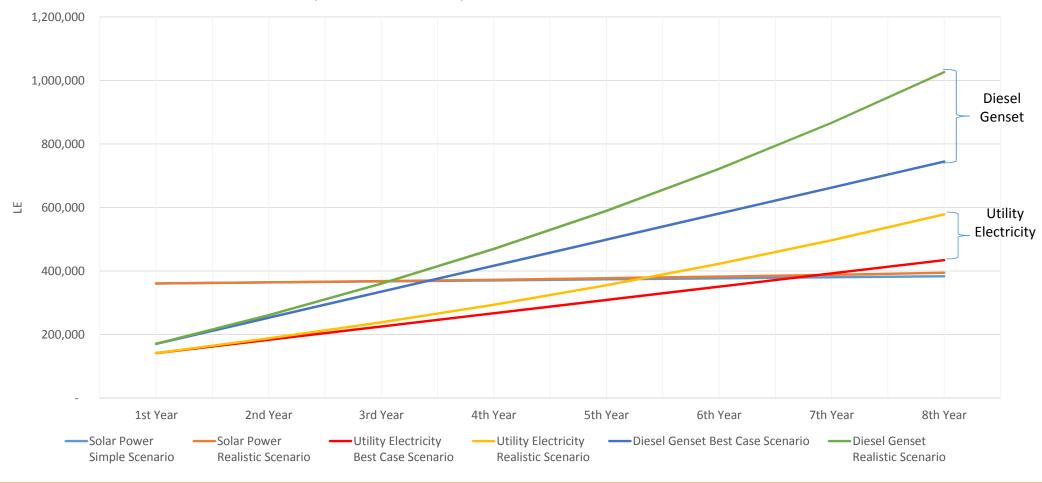
Green Tech Solutions

for power generation (SAE)


2nd Scenario – No subsidies

Accumulated expenses over next 8 years

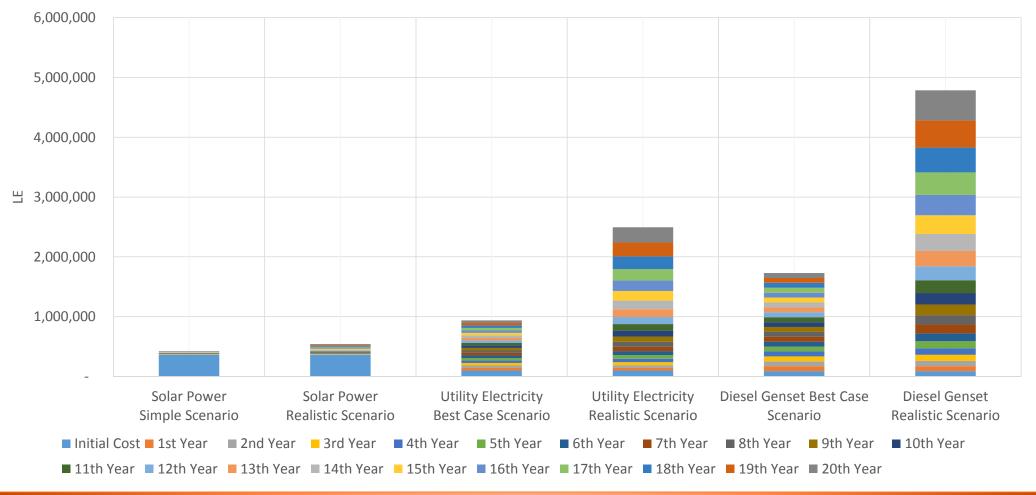
3rd Scenario – Today's prices with 10% annual increase



Green Tech Solutions

for power generation (SAE)

Accumulated expenses of different systems – Best Case Scenario Vs Realistic Scenario



Green Tech Solutions

for power generation (SAE)

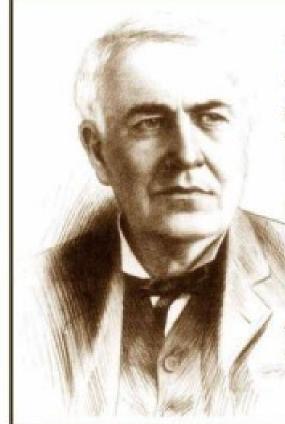
Life Cycle Cost Of Different Pumping Systems

Green Tech Solutions

for power generation (SAE)

Solar Pumping Applications in Egypt and the Potential

More than 2000 pump running by solar powers ranging from 1 or 2 HP up to 125 HP.


Desert land reclamation became much easier than before.

Hundreds of installers spread all around the country, many of them are from local communities of targeted areas.

The main barrier against spreading of solar pumping

The main barrier against spreading of solar pumping is the initial cost and the lack of financing facilities following facilities and the lack of financing facilities following facilities them fear to deal with banks.

We are like tenant farmers chopping down the fence around our house for fuel when we should be using Nature's inexhaustible sources of energy — sun, wind and tide. I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that.

Thomas Alva Edison, 1931

