

Solar Power Supply for Tourism and Hospitals in Africa

Agenda

- 1. The Tourism and Hospital Sector in Africa
- 2. Case studies Tourism and Hopitals in Tanzania
- 3. Case studies Mozambican Tourism Sector
- 4. Conclusions

Federal Ministry for Economic Affairs and Energy

The Tourism and Hospital Sector in Africa

Solar business opportunities

Key facts on Tourism and Hospitals in Africa

On-grid / bad-grid

Challenges

Tourism:

- Typically seasonal business
- Hotel managers cannot take decisions → access to the owners needed
- Short-term planning vs long-term PPA's

Hospital:

- Hospitals not business driven
 → long decision processes
- Often weak business case since hospital receive subsidised power

Case studies

Tourism and Hopitals in Tanzania

Hospital: Existing power generation setup

- Grid-connected facility with frequent power outages (no reliable grid)
- Undesirable as this leads to the nonfunctionality of critical medical appliances
- Back-up diesel generator to supply electricity when the grid is down
- The simulated PV system acts as a captive power system

Hospital: Measured load data

- High constant base load of at least 150 kW
- High power consuming equipments (medical appliances, air lacksquareconditioning, office appliances, cleaning and washing activities)

Facilitator

Typically high solar radiation, maximum in February

Federal Ministry for Economic Affairs and Energy

Daily Profile

Hospital: Proposed PV-System

- A 250 kWp PV system combined with a gridconnection possibility is the cost optimum solution
- PV penetration rate of approx. 18,9 %
- Payback period of approximately 8 years and savings of \$ 60,000 per year

	Base case	Case 1
Grid connection	yes	yes
Solar PV Size [kW]	-	250
PV Array [kWh/yr]	0	332.911
Grid Purchases [kWh/yr]	1.757.472	1.426.544
Total Capital Cost [\$]	-	500.000
Operating Cost [\$/yr]	316.345	256.776
LCOE [\$/kWh]	0.18	0.17
Payback Time [yr]	-	8.4
Savings [\$/yr]	-	59.923

Tourism (lodge):

Existing power generation setup

- Highly dependent on diesel-based generators to meet energy demands
- Generator 2 operates between 11 am 3 pm (peak load)
- Generator 1 operates rest of the day
- Controlling the operation strategy by manually switching on/off

Generator	Rated power	Operation strategy	
Generator 1	120 kW	3 pm – 11am	
Generator 2	140 kW	11 am – 3 pm	

Tourism (lodge): Measured load data

- Constant base load of 30 kW
- Peak loads during mid day and then during night hours
- High solar radiation data

Daily Profile

Tourism (Lodge): Proposed PV-System

- 50 kWp PV system combined with the two diesel generators represent the most cost-effective option
- Annual savings of about 20.610 \$
- Payback time of approx. 5 years

	Base Case	Case 1
Solar PV Size [kW]	-	50
Size Generator 1 [kW]	120	120
Size Generator 2 [kW]	140	140
Generators [kWh/yr]	419.749	393.385
PV Array [kWh/yr]	-	26.364
Total Capital Cost [\$]	-	102.500
Operating Cost [\$/yr]	258.079	237.469
LCOE [\$/kWh]	0,62	0,59
Payback Time [yr]	-	4,96
Savings [\$/yr]	-	20.610

Case studies

Tourism Sector in Mozambique

Tourism Sector in Mozambique Overview

Overall Market Potential

- 80% of population without electricity access
- Tourism sector is the second largest revenue source for forex market directly after extractive industry (coal, gas, etc.)
- Hotel owners often from South Africa

SUBSECTOR ANALYSIS Qualitative Photovoltaic Power Supply for the Mozambican Tourism Sector Download our Analysis of PV business opportunities in the Mozambican Tourism industry: http://www.giz.de/fachexpertise/downloads/giz2014-enpep-ssa-mz-sub-sector-analysis-pv-tourism.pdf

Source: FUNAE

Federal Ministry for Economic Affairs and Energy

Tourism Sector in Mozambique Travessia Beach Lodge

Buildings: & Infrastructure:

8 cottages existing, further in construction

Electrical: equipment:

Lamps, fan, refrigerators, deep freezers for bar and kitchen, no air conditioning, water heating with solar water heaters

Consumption estimation:

- optimized for low energy consumption
- electrical consumption 20 24k Wh per day

Power Supply:

Federal Ministry for Economic Affairs and Energy

- 7 kWp PV-system with 43.6 kWh battery installed by Asantys as main power supply
- Diesel generator as backup system

Tourism Sector in Mozambique Massinga Beach Lodge

Buildings & Infrastructure:

 32 villas with air conditioning & fridge, pools without pool pump, warm water supply by gas separated for each villa, energy saving lamps for lighting the villas and walkways

Consumption estimation:

- peak power demand ~70kW
- electrical consumption 400 kWh per day

Power Supply:

Federal Ministry for Economic Affairs and Energy

- Mini-grid driven by diesel genset with 72 kW power
- operating time 10 12 hours per day (until 10pm)
- diesel generator is used as main power supply
- second one is installed as backup system
- for the future a connection to the grid is planned

Tourism Sector in Mozambique Azura at Gabriels, Benguerra Island

Buildings & Infrastructure:

 16 Villas, all with air conditioning, swimming pool & fridge, cold room and refrigerating room for the restaurant

Consumption estimation:

- peak power demand ~150 kW
- electrical consumption 2,100 kWh per day

Power Supply:

- Mini-grid driven by 200 kVA natural gas generator for 24/7 use; operated with natural gas via gas pipeline from main land
- power supply contracted to ELGAS Maputo, ELGAS is owner of the equipment and performs the O&M
- payment based on consumed kWh (~34 USct/kWh)
- diesel backup in case of limited natural gas supply

Conclusions

Conclusions

Tourism:

- Growing market in most African and Southeast Asian countries
- Off-grid tourism typically a good business for local solar companies
- Solar integration in new constructions much easier to convince than existing ones
- Reach out to tourism associations

Hospital:

- Difficult market
- Do not try to sell solar but uninterrupted power supply
- Look for grants/public tenders to implement solar projects
- Reach out to foundations (e.g. Aga Khan Foundation or Christian foundations)

Thank you for your attention!

Markus Schwaninger

markus.schwaninger@giz.de Project Development Programme (PDP) of the "renewables – Made in Germany" initiative