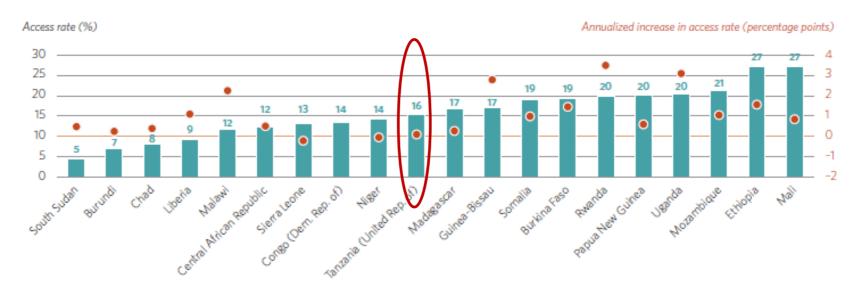


Impacts of electrification under the perspective of the Multi-Tier- Framework in Southern Tanzania | Annika Groth

00 | Agenda

- 01 | Background Tanzania and the Mwenga Hydro Power Project
- 02 Method
- 03 Results and Discussion
- 04 | Conclusion & Outlook
- **05** References

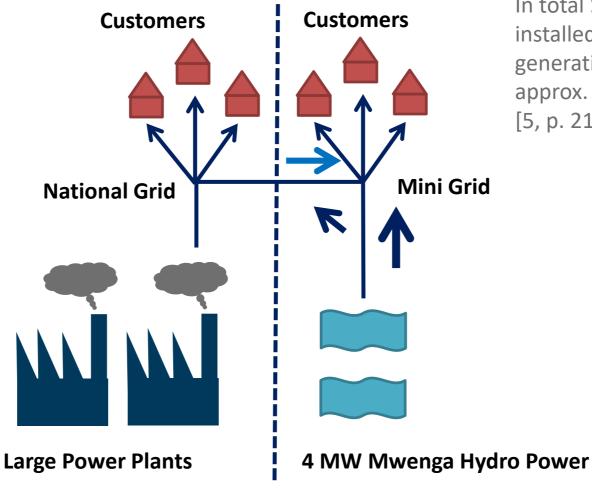
Figures on Tanzania


- Average annual real GDP growth rate of 7% in the last decade
 [1]
- Population size amounts to 55.6 million people in 2016 [1]
- Challenges:
- Total life expectancy: 65 years in 2015[1]
- Human Development Index (HDI): Position 151 out of 188 [2, p.200)
- ➤ Multidimensional Poverty Index (MPI): 66.4% multidimensionally poor in terms of education, health and standard of living [2, p.219]

Access to electricity

Approx. 16% of the total population (urban: 41%; rural: 4%)
[1]

FIGURE 2.8 Eighteen of the 20 least electrified countries boosted access rates in 2012-14


Access rate in 2014 (%) and annualized increase in access rate in 2012-14 (percentage points)

Source: [3, p.44]

Tanzania and the Mwenga Hydro Power Project


Total installed power generation capacity: **1564 MW**. [4,p.25]

In total **109** mini-grids, installed power generation capacity: approx. **157.7** MW. [5, p. 21, p.23, p.25, p.30]

Source: own elaboration based on[6, p. 11]

Motivation – Multi-Tier-Framework – Energy Access redefined

No longer a *binary* definition

"Reliability considers the frequency and length of interruptions to supply"

Source: [7, p. 7]

Motivation

- <u>Combination</u> of both types of rural electrification and its impact on the socio-economic conditions surrounding the interconnected projects has <u>rarely been studied</u>
- Motivation to <u>study the interconnection</u>:
- → Off-grid (mini-grid) systems limit electricity supply; restricted capacity for productive investments
- → But also grid- connected areas suffer from capacity constraints (e.g. through frequent black-out or load shedding); also limits the expansion of productive uses
- → Off-grid systems are frequently threatened by future grid expansion plans and might therefore not be implemented at all → if interconnection "works well", there is motivation for future investors to invest in off- and mini-grid systems

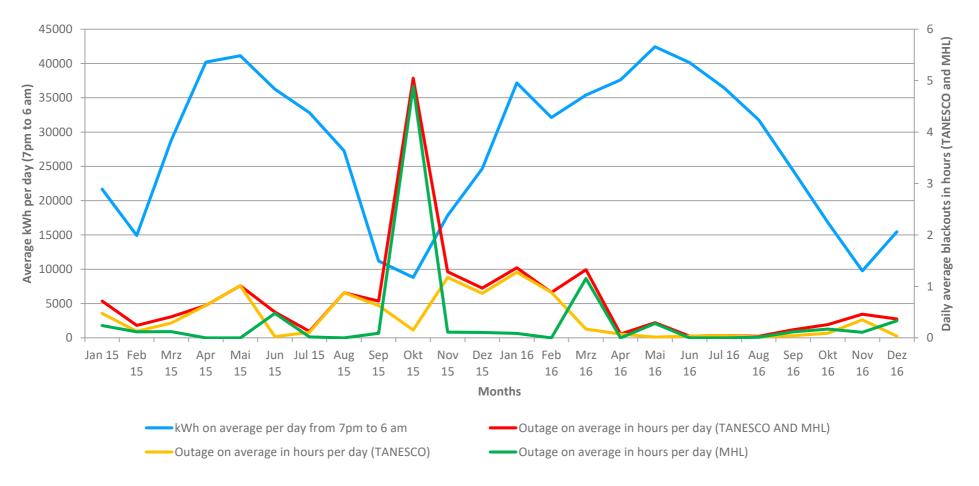
02 Method

Definitions and assumptions

- Outages per day: in hours, differenced by source (between 7 pm and 6 am)
- Distribution: average kWh per day (between 7 pm and 6 am)

 Intermediary outcome of electrification: average lighting hours per day per household, based on survey data from 2015 [8]

03 Results and Discussion


Daily average outages in hours from 7 pm to 6 am

	TANESCO outages	MHL outages	Both outages combined
2015	0.54 h	0.51 h	1.06 h
2016	0.26 h	0.19 h	0.45 h

Source: own calculation based on [9]

03 Results and Discussion

Outages and distributed kWh

Source: own elaboration based on [9]

03 Results and Discussion

Avergae lighting hours per day- Mini-grid connected area vs. not gridconnected area

	No outages considered	Both outages combined 2015	Both outages combined 2016	Tanesco outage 2015	Mwenga outage 2015	Tanesco outage 2015	Mwenga outage 2015
Mini-grid connected households	32.95 h	27.7	30.6	30.1	30.3	31.6	31.9
Not yet grid- connected households	23.94 h***	NA	NA	NA	NA	NA	NA

Source: own calculation based on [8;9]

04 | Conclusion and outlook

- Average daily lighting hours in grid-connected areas
 <u>significantly</u> higher than in non-grid connected (but "pre-electrified") areas
- Average daily lighting hours on absolute level affected by outages- irrespective of source, but more affected by TANESCO outages
- Interconnection between mini-grid and main grid counterbalances outage effects on average daily lighting hours on absolute level

04 | Conclusion and outlook

- Further research:
- Additional data from households collected from main-grid connected areas to study the impacts of outages
- More refined analysis to reflect seasonality of outages
- More profound statistical methods to allow for more robust results, e.g. Propensity Score Matching to identify control and research group
- ➤ Inclusion of more socio-economic indicators and parameters reflected in the Multi-Tier-Framework
- > Effects on Small and Medium Enterprises

05 | References

- [1] The World Bank, World Development Indicators, http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators, accessed online on 05.01.2018.
- [2] UNDP, Human development report 2016- Human development for everyone, New York, United Nations Publications, 2016.
- [3] International Energy Agency (IEA) and the World Bank, Sustainable Energy for All Global Tracking Framework 2017- Progress toward Sustainable Energy, 2017.
- [4] African Development Bank Group, Renewable Energy in Africa-Tanzania Country Profile 2015, 2015.
- [5] Odarno, Lily; Sawe, Estomih; Swai, Mary; Katyega, Maneno J.J.; Lee, Allison Christine, Accelerating mini-grid deployment in Sub-Saharan Africa: Lessons from Tanzania., TaTEDO, World Resources Institute, 2017.
- [6] Greacen, Chris; Engel, Richard; Quetchenbach, Thomas, A Guidebook on Grid Interconnection and Islanded Operation of Mini-grid Power Systems up to 200 Kw. Best Practices for Interconnection, Schatz Energy Research Center, Humboldt State University, Arcata, CA, and Lawrence Berkeley National Laboratory, Berkeley, CA, 2013.
- [7] The World Bank, Beyond Connections: Energy Access Redefined (Presentation), 2017.
- [8] Groth, Annika, Comparison of (pre-) electrification statuses based on a case study in Tanzania, Conference Paper, The 11th Conference on Sustainable Development of Energy, Water and Environment Systems SDEWES Conference, Lisbon, 2016.
- [9] Rift Valley Energy, June 2017.

Annika Groth

Tel.: +49 461 805 2517 Fax: +49 461 805 8052505 annika.groth@uni-flensburg.de

Munketoft 3b 24937 Flensburg Germany

www.uni-flensburg.de