Enerdata

Transport sector data and surveys

EPE-GIZ training on indicators
EPE, Rio de Janeiro , September 17-19 2012

Bruno Lapillonne, Vice President, Enerdata

Prepared with the support of ADEME

Overview of data for indicators in transport

$>$ Stock of vehicles by fuel type by type of vehicles (cars, light duty vehicles, trucks, buses, motorcycles, taxis...)
$>$ Data on cars (specific consumption, kilometres/vehicle)
$>$ Data on trucks
$>$ Energy consumption by fuel by mode (road, rail, air, water)
$>$ Energy consumption by fuel by type of vehicles

- 1. Stock of vehicles

2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland

Stock of vehicles: sources of data and definitions

-The stock of road vehicles by type (cars, trucks, light-duty vehicles, buses, two-wheels or motorcycles) is available from national statistics.

- It corresponds to the number of road vehicles registered at a given date (usually at the end of the year or the middle of the year) in a country and licensed to use roads open to public traffic.
-It should refer to the number of vehicles really on the road (i.e. in circulation and that consume motor fuels).
-Cars should also include taxis. Light duty vehicles also called light commercial vehicles have < 3 t useful load. Trucks correspond to heavy trucks (generally > 3 t useful load); trucks should also include road tractors (articulated vehicles, also called trailer truck).
-Military vehicles are usually excluded from the statistics.

Stock of vehicles: main issue with official sources

-Official data sometimes relate to all registered vehicles (i.e. including vehicle that have been scrapped and are not used any more), as they cumulate all the new registrations to the existing stock of vehicles without retiring the vehicles that are no longer used.
-Such data series usually overestimate the real stock of vehicle on the road, i.e. consuming motor fuels by over 30% (e.g. Tunisia).
-To get the real stock, several approaches
oUse other sources that better correspond to vehicles in use (from fiscal registry if annual fees are paid) oOr modelling using a survival law("(Gallez law)

Modelling of the stock of vehicule in use

Loi de survie des voitures

Immatriculations des voitures

- Average age of vehicles (e.g. 15 years for cars)
- Life time of vehicles (e.g. 25 years for cars)
- Annual sales

Modelling of the stock of vehicule in use

1. Stock of vehicles

- 2. Cars

3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland

Specific consumption of new cars

-Vehicle manufacturers usually provide information on the theoretical specific consumption of the vehicles commercialised, according to standardised driving cycles (e.g. European cycle*) and as an average .
-National average: sales weighted average of test values by type of car:

- for all car sold (EU approach)
-For the 10 or 20 most sold models (simplified approach)
-Data monitored by the European Commission since 1995 , processed by EEA
-Data also monitored by national car associations (e.g. France)
-For new cars, the actual recorded specific consumption on normal traffic conditions is higher than the theoretical value ("gap factor"**)

Specific consumption of new cars (litres/100km)

Source: EU Commission from car manufacturers

Average specific consumption of cars
-Specific consumption expressed in litre per 100 km or km / l or mpg
-Source:
ometered with on board equipment
ofrom surveys:
\checkmark from driver sheets (e.g.: Secodip survey in France)
\checkmark from driver declaration (e.g.: gas station surveys)
oor modelled

Specific consumption: metering

- Principle : from captor on board, from a sample of vehicle
- Advantages : S.E.C. in real conditions of use coupled with very detailed parameters, validation of simulation model, well describes the microscopic mechanisms, influence of parameters on S.E.C. and pollutants
- Drawbacks : expensive, difficult to implement technically, non representative at national level, needs collaboration of manufacturers and drivers, bias due to the driver behaviour.

Specific consumption: survey from driver sheet

- Principle : Division of basic information of purchased quantity of fuel and the metered mileage.
- Sampling methods are comparable to driver's declaration one. Use of households panel is complex.
- Advantages : on road consumption at very detailed level, ensures coherence between S.E.C. and mileage and socio-economic parameters, used for travel survey, fuel price following-up
- Drawbacks : very expensive (weekly follow up), bias for long runners (boring) ie. underestimation and new drivers, low response rate, to dispose of a reference for the sampling.

Specific consumption : survey from driver declaration

- Principle : based on "call for memory" from the driver
- Data collection : mailed or self administrated questionnaire, surveyor on board or "gas station survey"
- Sampling : sample or panel of drivers, households, vehicles or companies
- Period : daily, weekly, yearly.
- Advantages : Easier, cheaper, less reliable than driver sheet
- Drawbacks: Maybe underestimate the results. Bias due to implicit calculation between fuel purchase and mileage performed. This bias is as big as the reference period is far.

Data on car use (km/year)

$>$ Data for vehicle use (km/vehicle/year) requires dedicated surveys; several methods:
>national household surveys (eg France, Germany)
$>$ panel of representative vehicle owners (eg Secodip survey in France)
> surveys at gas stations...
$>$ Collection of data from technical controls (e.g. Ireland)
\Rightarrow The main issue: consistency between the population surveyed and the vehicle stock
$>$ Methods based on vehicles meters are more reliable... if meters reliable

Change in distance travelled by car km/ year

1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland

Specific/unit consumption to assess energy efficiency of trucks: technical and pattern of use

$>$ Data required:
-Specific consumption in litre per km: from surveys
-Annual traffic of trucks in ton-km from surveys
-Annual distance travelled per year per truck (thousand km from surveys
>Survey on transport of goods cover all these data

Surveys of road good transport: case of UK and France

-UK: Continuing Survey of Road Goods Transport (CSRGT)
-Collects data from 12,000 vehicles per year, each one being monitored during one week over 3.5 t gross weight
\bullet For articulated trucks > 33 t , the CSRGT sample is around 5000 vehicles

- France: Survey of Road Goods Transport (Transport Routier de Marchandises - TRM)
-About 15,000 trucks over 3.5 t and 70,000 tractors (< 15 years) surveyed per year -The statistical unit of the survey is vehicle activities over one week.
-Both surveys provide annual data about road freight operations carried out by goods vehicles over 3.5 t
- In order to deal with seasonality matters, both the British and French surveys are continuous, and the questionnaires are sent regularly to vehicle users.
-Questionnaires are filled by the driver or the company \rightarrow allows a very good accuracy
-On board telematics, with sensors registering the fuel use, vehicle weight and distance on a computer, would offer even higher data accuracy (e.g. German toll system)

Surveys of road good transport: TRM survey in France

-Scope : French trucks of less than 15 years over 3.5t useful load (trucks and tractors for articulated vehicles)
-Periodicity : permanent survey to cover seasonal aspects
-Statistical unit surveyed: « véhicule-week».
-Sampling
Sampling based on the registry of vehicles (« Fichier central des automobiles »). Total stock of is 275000 for trucks and 265000 for tractors (articulated vehicles).
The sampling is done every quarter with a rotation of half the samples every year
The sampling is based on the activity (APE) and the vehicle age.

Surveys of road good transport: TRM survey in France

-Questionnaire content and main data collected

- Activity of company owning the truck,
- Type of vehicle
-Distance travelled loaded or empty,
- Load factor of the vehicle
- Type of goods carried
- Tonnage carried
-Origin / destination of traffic.
-Calculation :
- tonnes-kilometre,

Surveys of road good transport: case of UK and France

 Key performance indicators and efficiency of all goods vehicles over 3.5 t (2006)| | UK | France |
| :---: | ---: | ---: |
| Goods lifted (Mt) | 1810 | 2060 |
| Goods moved (Mtkm) | 155762 | 205279 |
| Vehicle km (million km) | 22384 | 21368 |
| Length of haul (km) | 86 | 100 |
| Empty running (\%) | 27% | 25% |
| Average load (tkm/load km) | 9.5 | 12.8 |
| Tonne km : vehicle km | 7.0 | 9.6 |
| Ave. fuel efficiency (l/100 km) | 34.5 | 35.7 |
| Total fuel use (million litres) | 7712 | 7624 |
| Fuel use intensity (l/km) | 0.05 | 0.04 |

Source: CSRGT survey (UK) and TRM survey (France)

Surveys of road light duty vehicles : case France

-Périodicity: about every 5 years since 1981 (1986, 1991, 1996, 2000 , 2006 et 2011
-Scope : vehicles below 3.5t useful load
-Sampling: based on the registry of vehicles (« Fichier central des
automobiles »). The sampling is based on the activity, the size of the vehicle, the fuel and the vehicle age. \rightarrow around 25000 vehicles surveyed
-Main variables colected
-Distance travelled
-Type of fuel,

- Fuel consumption
- Use of the vehicles

Méthodologie: http://www.statistiques.developpement-durable.gouv.fr/sources-methodes/enquete-nomenclature/1543/0/enquete-lutilisation-vehicules-utilitaires-legers-vul.htm|?tx ttnews\%5Bcatdomaine\%5D=873\&cHash=62a2ebe8c55a763368f0b76fb7af735c
Résultats 2011 : http://www.statistiques.developpement-durable.gouv.fr/transports/r/utilisation-
vehicules.html?tx ttnews\%5Btt news\%5D=22388\&cHash=7032728b2364d308c400cd4846f7fc9e

Surveys of road light duty vehicles : case France

Consommation moyenne en 2010 selon la nature du carburant et le PTAC

	Natures de carburants					
Classes de PTAC (en tonnes)	Gazole	Super	GPL	GNV El	Electricité	Total
Moins de 1,5 t	6,4	7,4	7,9	7,4	16,1	8
1,5 t à 2,599 t	7,0	9,1	10,3	8,3	16,7	7,1
2,6 t à 3,499 t	9,7	13,0	18,1	11,9///		9,7
3,5 t	11,4	14,7	17,6	11,9/I/		11,4
Total	8,2	8,2	11,6	8,1	16,5	8,2

Unités : I/100km, GNV : kg/100 km, électricité : kw /100 km

Surveys of road good transport: bibliography

-Overview of UK and French Surveys of Road Goods Transport (CSRGT and TRM)
-IMPROVING ENERGY EFFICIENCY IN ROAD FREIGHT TRANSPORT SECTOR: THE APPLICATION OF A VEHICLE APPROACH " http://www.greenlogistics.org/SiteResources/7d476c2c-2574-4890-ae4a-997484b9a443 LRN\%20vehicle\%20approach.pdf

■Detailed methodology of French survey : http://www.statistiques.developpement-durable.gouv.fr/sources-
methodes/enquete-nomenclature/1543/0/enquete-transport-routier-marchandises-
trm.html?tx ttnews\%5Bcatdomaine\%5D=873\&cHash=8ba4ef779963d0102eb250e3c7128d46
-Result of French survey: http://www.statistiques.developpement-durable.gouv.fr/transports/s/route.htm|
-Road freight surveys in UK: http://www.statistics.gov.uk/hub/travel-transport/roads/freight and
http://www.dft.gov.uk/statistics/series/road-freight/
-Methodology of surveys in each EU country: Eurostat "Methodologies used in surveys of road freight transport in member states and candidate countries, 2008
http://epp.eurostat.ec.europa.eu/cache/ITY OFFPUB/KS-RA-08-009/EN/KS-RA-08-009-EN.PDF

1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles

- 4. Consumption by mode/vehicle

5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland

Data on energy consumption

>Data for energy consumption by main transport mode: rail, air, waterways \& sea transportation and road usually directly available in statistics
>Data for energy consumption of road transport by vehicle types and services(passenger vs freight) usually not directly available in the statistics, but through estimates and modelling

Source des données de consommation finale par mode et type de véhicules routiers

Poids relatif des méthodes utilisées

- Enquetes
\square Administratives
Modelisation
- Mesures

Average specific consumption of cars

Calculation:
-ratio calculated from the total consumption of cars, the stock of cars, the average distance travelled by year per car and the average calorific value of motor fuels
cstocvpc=toccfvpc/(nbrvpc*kmvpc)*100* coefvpc (l/100km)
\checkmark toccfvpc: total consumption of cars (Mm3)
\checkmark nbrvpc : stock of cars (millions)
\checkmark kmvpc: average distance travelled per year per car (thousand km)
\checkmark Coefvpc: average calorific value of motor fuels (toe/litre)

1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle

- 5. Modelling of consumption by vehicle: case study of France*

6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland
-Source: F. Boccara \& B. Nanot , SOES, Ministry of Ecology, Energy, Sustainable Development and Country and Town Planning, ODYSSEE-MURE, May 18-19th 2009, Paris
And D Bosseboeuf, ADEME

Study case from France

- The official energy balance (Ministry of industry) based on sales data do not provide detailed information by vehicle type.
- A working group, under the statistical unit of the French Ministry in charge of Energy and Transport ("SOES") elaborates such breakdown on a yearly basis based on a modelling (INSEE, SOES, CPDP, Ademe, CFCA)
- Despites some adjustments inherent to this methodology, the fact that the methodology used is similar each year ensures a certain reliability of the estimates.

Study case from France: (1)

- The starting point is the fuels sales. This information, coming from the refiners, is very reliable ($0,5 \%$). They will be compared or cross checked with a reconstitution of the transport consumption obtained in multiplying its technico-economic determinants (stock of vehicle, S.E.C., mileage) for each type of vehicle.
- The stock of vehicle is provided by an estimate of the vehicle manufacturer association (CCFA) by vehicle type and energy. This estimates is a consensus among several other sources. It is the stock on duty of French vehicles only.

Study case from France (2)

- The mileage is coming from specific surveys for car (household panel, Secodip), from annual traffic survey for bus and trucks (M.O.T.) and from extrapolation of snapshot surveys for light vehicles.
- This mileage is not perfectly coherent with the definition and disaggregation of the stock. Adjustments are made.
- Then a domestic traffic is calculated in vehicule-km by vehicle type and energy.
- Traffic of special vehicles, and foreign vehicles is estimated from surveys (transit) and a sold including motorcycles is added.

Study case from France (3)

- The specific consumption ($\mathrm{L} / 100 \mathrm{~km}$) is coming from same survey used for the mileage. (from driving sheet for car, call of memory for light vehicles, bus and trucks etc.).
- Clearly, adjustement are made at this stage and the reliability is rather weak for trucks and bus.
- The total consumption by vehicle is then calculted, splitting consumption of french vehicles and foreign vehicles.
- A balance is expressed between this estimate and the fuel sales. In 1996, it represents 0% for gasoline and $1,5 \%$ for diesel. But is very erratic.

The principle of the method

Sources: Sofres, Inrets, CCFA, Asfa, Setra, Survey TRM, etc.

The calculation (1)

(separate tables for diesel and gasoline)

	Stock of vehicles	Average km	Traffic (veh * km)	Unit cons. ($/ 100 \mathrm{~km}$)	Consumption (m ${ }^{3}$)
Personnal cars	CCFA registration + taxes + modelling	Panels	calculated	Panels	calculated
Light commercial vehicles	CCFA registration + taxes + modelling	$\begin{gathered} \text { Survey (/5 } \\ \text { years) + } \\ \text { estimation } \end{gathered}$	calculated	$\begin{gathered} \text { Survey (/5 } \\ \text { years) + } \\ \text { estimation } \end{gathered}$	calculated
Lorries	TRM Survey	TRM Survey	calculated	TRM Survey (additional question)	calculated

The calculation (2)

Stock of vehicles	Average km	Traffic $($ veh $* \mathrm{~km})$	Unit cons. $(\mathrm{I} / 100 \mathrm{~km})$	Consumption $\left(\mathrm{m}^{3}\right)$

Buses and coaches	Survey (/5 years) estimation estimated	calculated
Motorcycles and others		estimated

Lorries (foreign)	TRM foreign surveys	TRM foreign surveys	calculated	estimated	calculated
Cars and light commercial vehicles (foreign)			Surveys (tourism) + estimation		calculated
TOTAL	Addition		Addition		Energy statistics

The interest of the method

- Mixing the different sources improves the global quality : it makes the inconsistencies evident and force to clarify and improve the methodologies. The very good quality of fuel statistics is a relevant input for traffic statistics.
- The method guarantees the consistency of traffic statistics and energy statistics. It is specially useful for the inventories of greenhouse gases emissions.

Detailed energy balance for transport

PARCS MAOYENS (VEPICules iamriatimcuitsen France)

en milijers de venicules	1994	7595	1996	1997	1998	-999
Voituresp particuliberes dont essence dont societes dont particuliers dont Diesel dont societes dont particuliers	$\begin{array}{r} 24643 \\ 18222 \\ 18515 \\ 5921 \\ 5779 \\ 572 \end{array}$	$\begin{array}{r} 25000 \\ 18378 \\ 18173 \\ 6622 \\ 160 \\ 6462 \end{array}$	$\begin{array}{r} 25300 \\ 18096 \\ 17841 \\ 7204 \\ 7045 \\ 7059 \end{array}$	$\begin{array}{r} 25795 \\ 18045 \\ 228 \\ 17817 \\ 7750 \\ 1689 \\ 7584 \end{array}$	$\begin{array}{r} 26450 \\ 18131 \\ 17895 \\ 8319 \\ 166 \\ 8153 \end{array}$	$\begin{array}{r} 27 \\ 18 \\ 1415 \\ \\ \text { nd } \\ \text { nd } \\ 8335 \\ \text { nd } \\ \text { nd } \end{array}$
VEmicules militaireslagers dont essence clont Diesel	$\begin{aligned} & 4495 \\ & 1665 \\ & 2830 \end{aligned}$	4555 1560 2995	$\begin{aligned} & 4606 \\ & 1494 \\ & 3112 \end{aligned}$	$\begin{aligned} & 4697 \\ & 1443 \\ & 3254 \end{aligned}$	$\begin{aligned} & 4822 \\ & 1404 \\ & 3 \end{aligned}$	$\begin{array}{ll} 4 & 934 \\ 1 & 356 \\ 3 & 578 \end{array}$
Weinicules lonrds dont poids lourds dont bus et cars	$\begin{array}{r} 606 \\ 529 \\ 77 \end{array}$	$\begin{array}{r} 611 \\ 532 \\ 79 \\ \hline \end{array}$	617 536 81	$\begin{array}{r} 625 \\ 543 \\ 82 \end{array}$	$\begin{array}{r} 617 \\ 535 \\ 82 \\ \hline \end{array}$	622 541 81
TWTAL VEHECULES	29.744	30766	30.523	31177	31889	32700
Sounce: COFA PARCOURS MOVENS						
krifustucule	7994	1995	1996	1997	1998	1999
```Voitunmes pmariculidmes= dont essemce dont societes dornt particuliers dont Diesel dont societés dont particuliers```	$\begin{aligned} & 13832 \\ & 11739 \\ & 23247 \\ & 11383 \\ & 20450 \\ & 39797 \\ & 19951 \end{aligned}$	$\begin{aligned} & 14005 \\ & 11619 \\ & 23558 \\ & 11484 \\ & 20627 \\ & 40192 \\ & 20142 \end{aligned}$	14030 11505 23408 11345 20373 40075 19968	$\begin{aligned} & 13985 \\ & 11583 \\ & 23645 \\ & 11429 \\ & 19578 \\ & 38434 \\ & 19 \\ & 1965 \end{aligned}$	$\begin{array}{ll} 14 & 037 \\ 11 & 440 \\ 23 & 570 \\ 11 & 280 \\ 19 & 696 \\ 38 & 434 \\ 19 & 314 \end{array}$	$\begin{array}{r} 14103 \\ 11359 \\ \text { nd } \\ 19696 \\ \text { nd } \\ \text { nd } \end{array}$
Vemiculess unilitaires lagers dont essence clont Diesel	$\begin{array}{r} 15677 \\ 10145 \\ 15520 \end{array}$	$\begin{array}{r} 15773 \\ 8887 \\ 15360 \end{array}$	$\begin{array}{r} 15774 \\ 8629 \\ 19200 \end{array}$	$\begin{array}{r} 15641 \\ 8629 \\ 19040 \end{array}$	$\begin{array}{r} 15895 \\ 18829 \\ 18880 \end{array}$	$\begin{array}{r} 15971 \\ 8542 \\ 18786 \end{array}$
Vobinceules iourds dont poids lourds dont bus et cars	$\begin{aligned} & 43811 \\ & 45784 \\ & 30261 \end{aligned}$	$\begin{array}{ll} 43 & 858 \\ 46 & 037 \\ 29 & 089 \end{array}$	$\begin{aligned} & 43068 \\ & 45246 \\ & 28565 \end{aligned}$	$\begin{aligned} & 43403 \\ & 45689 \\ & 28260 \end{aligned}$	$\begin{aligned} & 49991 \\ & 47533 \\ & 28408 \end{aligned}$	$\begin{aligned} & 46108 \\ & 48837 \\ & 27896 \end{aligned}$
(en litreftookm)	1994	1995	1996	1997	1998	1999
```Voitures particuilieres dont essence dont Diesel```	$\begin{aligned} & 7.78 \\ & 8,43 \\ & 6,61 \end{aligned}$	$\begin{aligned} & 7,78 \\ & 8,49 \\ & 6,67 \end{aligned}$	$\begin{aligned} & 7.69 \\ & 8.38 \\ & 6.72 \end{aligned}$	$\begin{aligned} & 7,64 \\ & 8,30 \\ & 6,72 \end{aligned}$	$\begin{aligned} & 7.59 \\ & 8.28 \\ & 6.72 \end{aligned}$	$\begin{aligned} & 7,52 \\ & 8,25 \\ & 6,65 \end{aligned}$
Véhicules utilitaines légers dont essence ciont Diesel	$\begin{aligned} & 9,71 \\ & 9,52 \\ & 9,77 \end{aligned}$	$\begin{aligned} & 9,73 \\ & 9,56 \\ & 9,77 \end{aligned}$	$\begin{aligned} & 9.74 \\ & 9.61 \\ & 9.77 \end{aligned}$	$\begin{aligned} & 9,74 \\ & 9.61 \\ & 9.77 \end{aligned}$	$\begin{aligned} & 9.74 \\ & 9.61 \\ & 9.77 \end{aligned}$	$\begin{aligned} & 9.70 \\ & 9.61 \\ & 9.72 \end{aligned}$
Véhicules lourds dont poids lounds dont bus et cars	$\begin{aligned} & 36,12 \\ & 36.44 \\ & 32.80 \end{aligned}$	$\begin{aligned} & 36,39 \\ & 36,71 \\ & 33,00 \end{aligned}$	$\begin{aligned} & 36,66 \\ & 36,99 \\ & 33,20 \end{aligned}$	$\begin{aligned} & 36,93 \\ & 37,26 \\ & 33,40 \end{aligned}$	$\begin{aligned} & 37,21 \\ & 37,54 \\ & 33,60 \end{aligned}$	$\begin{aligned} & 37,34 \\ & 37,69 \\ & 33,26 \end{aligned}$

Socrce = Darrer ADEANE-SECOD/D

Detailed bottom-up energy balance for transport

ACHATS DE CARBURANTS

(en milliers de m3)	1994	1995	1996	1997	1998	1999
Total VP françaises	26530	27239	27310	27545	28185	28772
Total VUL français	6844	6988	7073	7245	7464	7643

Essence						
Deux roues	259	225	227	225	238	286
Voitures particulieres	18527	18128	17447	17349	17174	17065
Véhicules utilitaires légers	1450	1326	1238	1196	1164	1112
Total véhicules légers français	20235	19679	18913	18770	18576	18463
VP et VUL étrangers	1252	1251	1251	1312	1402	1393
Total Conso Transpt en France	21487	20930	20163	20081	19978	19856
Achat aux frontières et ajustement statistique	-212	-611	-449	-787	-1 012	-1001
Vente sous douane	14	14	17	19	17	26
Divers	305	313	319	325	332	340
Livraisons CPDP	21593	20646	20050	19638	19315	19221

Gazole						
Voitures particulières	8004	9111	9863	10196	11011	11708
Véhicules utilitaires légers	5394	5662	5835	6049	6301	6531
Total véhicules légers français	13398	14773	15697	16245	17311	18238
Poids lourds	8824	8991	8970	9244	9546	9948
Bus et cars	764	754	763	774	783	752
Total véhicules lourds frança is	9589	9745	9733	10018	10328	10700
VP et VUL étrangers	189	198	206	224	247	245
Véhicules lourds étrangers	1819	1943	2064	2184	2302	2382
Total Conso Transpt en France	24995	26658	27701	28672	30189	31565
Achat aux frontières et ajustement statistique	-398	-684	-721	-486	-992	-1 310
Vente sous douane	511	503	487	489	496	515
Divers	813	833	852	867	887	900
Livraisons CPDP	25921	27310	28319	29542	30580	31670

[^0]1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)*
7. Gas station survey: case of Tunisia
8. Case study: Ireland
-Source: D Bosseboeuf, ADEME

Objectives of the Secodip panel on cars consumption

- Yearly monitoring of the on road specific consumption and mileage for private cars since 1988
- Fuel purchased by vehicle, fuel expenditure per household
- Market shares of fuels by distributors
- Seasonal variations
- Co- funding administrations (industry, transport, environment) and ADEME + oil companies for additional questions
- 130000 euros annually (2002)

Secodip panel: a large diversity of outputs

- Market share by fuel types; by distributors
- Stock of private cars by fuels, by vehicle/drivers, household characteristic
- Yearly mileage per car by fuels, by vehicle/drivers, household characteristic, by traffic, region, monthly variation, ownership
- l/100 km per car by fuels, by vehicle/drivers/ household characteristics, by ownership
- Fuel quantity purchased (abroad 3\%) , average consumer prices and household expenditure,

Methodology of the household panel on unit consumption for cars

- 3300 cars, representative of the households french cars stocks
- Drivers are selected from an ad hoc existing household panel of 8000 household, representative of the French population.
- Questionnaire (driving sheet) every 15 days on fuel purshase , every month on refueling and mileage
- Response rate : 84 \%

Household panel

- The panel of SECODIP drivers is extracted from an existing household panel
o volunteers from the household panel
o each household can provide information for 1 or several vehicles
- This household panel is representative of French resident household and adjusted according to the following geo socio-demographic criteria :
o Household size
o Region
o Age of driver
o Socio-professionnal category
- The panel is also adjusted based on criteria related to the vehicle :
o First year of circulation (i.e. age)
o Power
o Fuel
o Brand

Mileage calculation

- The follow-up of annual mileage variation through metering is difficult:
o The number of panelists decreases along the year
o New panelists, new cars etc.
- Mileage assessment is obtained by indirect calculation from the specific consumption obtained in the survey as follows
o $\mathrm{I} / 100 \mathrm{~km}=$ Purchased quantity of fuel /mileage traveled between the refueling
o Average mileage : purchased quantity in one year ///100 km

Conclusion

- Original information particularly on specific consumption on road (compared to tested consumption)
- Stock, mileage and specific consumption are cross checked with vehicle characteristics and socio economic characteristics of the household
- Is it cost effective?
o Yes because its answers to various issues (traffic, energy etc)
o Yes if we can attract others sponsors (car makers, insurance etc.)
o Yes because cost are infinitesimal compared to the energy bills

1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)

- 7. Gas station survey: case of Tunisia*

8. Case study: Ireland
-Source: Bertrand Château, Enerdata, for ANME, 2001

Gas station survey : types of data produced

\checkmark Breakdown of fuel sales of gas station surveys by vehicle types and types of uses
\checkmark Gasoline (regular and premium), unleaded, diesel, LPG
\checkmark Cars (private versus professional; of which $<=4 \mathrm{CV}, 5-7 \mathrm{CV},>7 \mathrm{cv}$), Taxis, Light duty vehicle, Trucks, Tractors etc.
\checkmark Yearly mileage by type of road vehicle
Gasoline (regular and premium), unleaded, diesel, LPG
Cars (private versus professional; of which $<=4 \mathrm{CV}, 5-7 \mathrm{CV},>7 \mathrm{cv}$),
Taxis, Light duty vehicles, trucks, tractors etc.
$\checkmark<1$ year, 1-2 years, 2-3 years, 3-5 years, 5-7 years, 7-10 years, 10-15 years, 15-20 years, > 20 years
\checkmark Structure of vehicle stocks
Gasoline (regular and premium), unleaded, diesel, LPG
Cars (private versus professional; of which <=4CV, 5-7 CV, >7cv), Taxis, Light duty vehicle, Trucks, Tractors etc.

Tunis

Station		Période
M. Mohammed V	April - mai 2006	X
Sokra	Ennasr	July - August 2006

Sousse - Sfax

Station	Période	X
Oued El Kharroub (Khzama)	April - may 2006	\mathbf{X}
Oued El Kharroub (Khzama)	July - August 2006	
Teniour (Sfax)	September - october 2006	
Sagaz	Total Number of surveyed vehicles	$\mathbf{3 2 5 0}$

Kasserine

Station		Période		
(En discussion avec la compagnie)	April - May 2006			
	Juillet - Août 2006	\mathbf{X}		
	September - October 2006	$\mathbf{1 2 5 0}$		
	Total of vehicles of surveyed			

IPFFC Sent 2011

Gas station survey : the adjustement

- Representatives of sampling
oRepresentativeness of surveyed gas stations: volumes and structures of fuels, types of traffic, geography
oRepresentativeness of customers in surveyed gas stations: volume and structures of fuels, volume and structures of stocks of vehicles.
- Sources of bias to be adjusted
oMultiple passage
oSeasonality
OOver-representativeness of large runners
oMistake in the data collection
- Methods of adjustment
oStructure of fuel sales by vehicle types: scratching of data collection mistakes, seasonality
oAnnual distance travelled: Elimination of multiple passage, weighting of surveyed stocks according to age based on new registrations oStocks structure: idem

Gas station survey : complementary data needed

\checkmark First year of running
\checkmark Cars, Taxis, Taxis, Louages, LDV, Trucks, Urban bus, Autocars \checkmark Model and fuel
\checkmark Tested specific consumption by vehicle type according to date of running \checkmark Cars, Taxis, LDV (<= 3,5 tCU, of which <=1tCU, >1tCU), Trucks (of which $<6 \mathrm{t}, 6-12 \mathrm{t},>12 \mathrm{t}$), urban buses, interurban buses \checkmark Model and fuel

Gas stations surveys: representativeness according to the vehicles

	$<=3$ an	$3-5$ ans	$5-10$ ans	$10-15$ ans	$>=15 \mathrm{ans}$	Total
Total VP	$0,79 \%$	$0,65 \%$	$0,85 \%$	$0,42 \%$	$0,09 \%$	$0,43 \%$
TCP			$0,19 \%$	$0,04 \%$	$0,02 \%$	$0,06 \%$
Camionnette	$0,36 \%$	$0,28 \%$	$0,28 \%$	$0,11 \%$	$0,04 \%$	$0,15 \%$
Camion	$0,11 \%$	$0,32 \%$	$0,12 \%$	$0,07 \%$	$0,06 \%$	$0,09 \%$
Tracteur routier				$0,18 \%$		$0,03 \%$

> Large drop of the representativeness rate along with age after 10 years: probably a cumulated effect and over estimation of running stocks and under representativeness of small runners
$>$ low representativeness of tractors and others vehicles indicating another mode of refueling

1. Stock of vehicles
2. Cars
3. Trucks and light duty vehicles
4. Consumption by mode/vehicle
5. Modelling of consumption by vehicle: case study of France
6. Survey of car energy use in France (Secodip)
7. Gas station survey: case of Tunisia
8. Case study: Ireland*
-Source: Martin Howley and Brian O' Gallachoir, SEI, Data gaps and barriers: the experience of Ireland
9. Stock of vehicles
10. Cars
11. Trucks and light duty vehicles
12. Consumption by mode/vehicle
13. Modelling of consumption by vehicle: case study of France
14. Survey of car energy use in France (Secodip)
15. Gas station survey: case of Tunisia
16. Case study: Ireland*
-Source: Martin Howley and Brian O' Gallachoir, SEI, Data gaps and barriers: the experience of Ireland

Case Study Private Cars

- Vehicle Registration Database
- Detailed database on vehicles by size, fuel, use etc
- Weighted fuel efficiency \& CO_{2} emissions by engine size by linking with car test database
- National car test - introduced in 2000
- Mileage recorded first after 4 years and then every 2 years thereafter
- Possible to calculate average annual mileage by engine size from database
- Bottom-up estimate of petrol \& diesel consumption
- annual mileage x fuel efficiency x estimate of on-road adjustment of fuel efficiency
- Similar calculation for taxis
- Taxis tested annually and mileage recorded

Indicator 1 - Specific Fuel Consumption of New Cars

Private Car Mileage

Annual Mileage by engine size and fuel

Fuel Efficiency of new cars by engine size

Fuel Efficiency X inflated by 20\% for on-road

Numbers of cars in each engine size band

$$
=\begin{gathered}
\text { Petrol \& Diesel } \\
\text { consumption in } \\
\text { private cars }
\end{gathered}
$$

Road Freight Transport

- Vehicle registration data
- Numbers of vehicles by unladen weight
- Annual Road Freight Survey (Statistical Office)
- Vehicle kilometres
- Tonne kilometres
- Used international estimates of fuel use per tonne kilometre and vehicle kilometre to estimate energy use

Energy Balance

Total Transport Energy Use

selw Transport Demand by Mode

- No additional surveys conducted
- Value added from administration data
- Cost?
- 3 person months (student work placement)
- plus database development
- Data access
- initial resistance
- bona fida established and added value recognised
- $\mathrm{g} \mathrm{CO}_{2} / \mathrm{km}$ now recorded on the vehicle file

[^0]: Source : CPDP et estimations DAEI/SES

