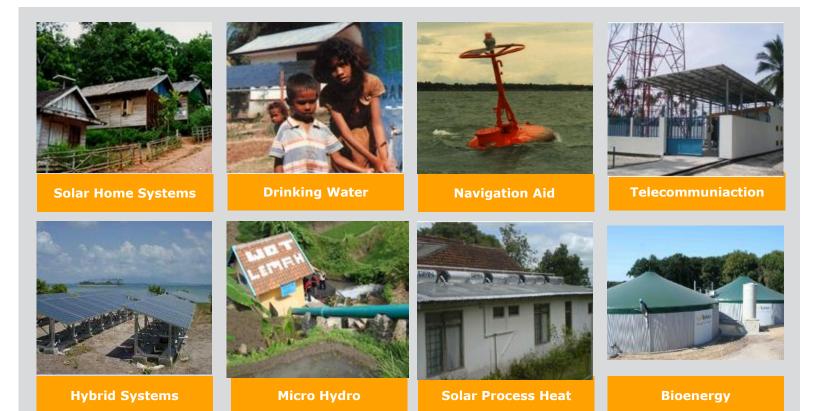
Grid Interconnection of Micro/Mini Hydropower in Indonesia

What happens when the national grid arrives?

Mini-Grid Webinar Series

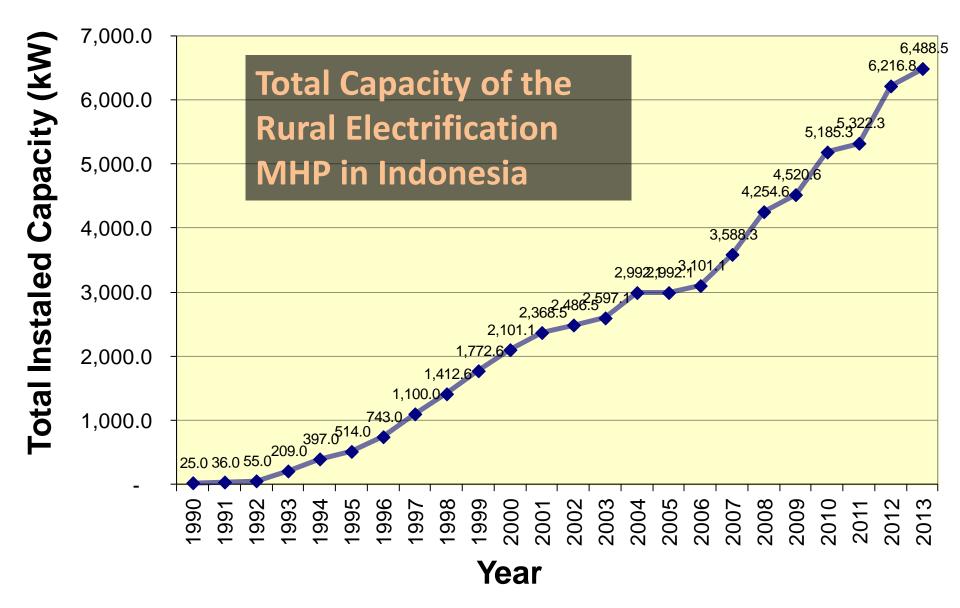

Energypedia UG, Hydro Empowerment Network, Skat Foundation June 1, 2017

> Chayun Budiono chayun@indo.net.id PT Gerbang Multindo Nusantara (GMN)

> > Ardi Nugraha ardi.nugraha@entec.co.id PT Entec Indonesia

Renewable Energy for Rural Applications

GMN Focus Areas


Micro/Mini Hydro Development in Indonesia

 Standalone MHPs for rural electrification in Indonesia have been developed by

Non-Government	Government
Organizations (NGOs)	Initiative
Paguyuban Kalimaron,	 Ministry of Energy and
Yayasan Mandiri, IBEKA,	Mineral Resources, Ministry of Cooperative
WWF, Cooperatives, etc.	and SME

International Cooperation Programs

- **30-years of cooperation** with international organisations, e.g. GTZ/GIZ, JICA, UNDP, ADB, and World Bank, others.
 - "MHPP" for technology transfer of MHP technologies and mini grid implementation (1995-2008)
 - "IMIDAP"; Integrated Microhydro Development and Application Program (2006-2010)
 - PNPM and "Green PNPM" rural infrastructure programme and Technical Support Unit TSU (2009-2012)

Technology transfer, training, implementation of MHPs in Indonesia

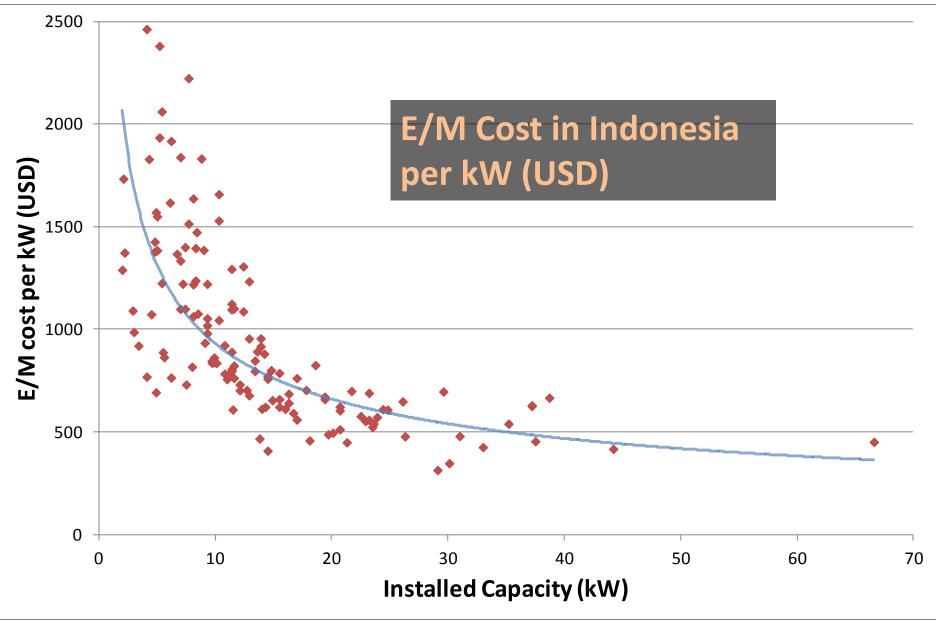
National Government Programs

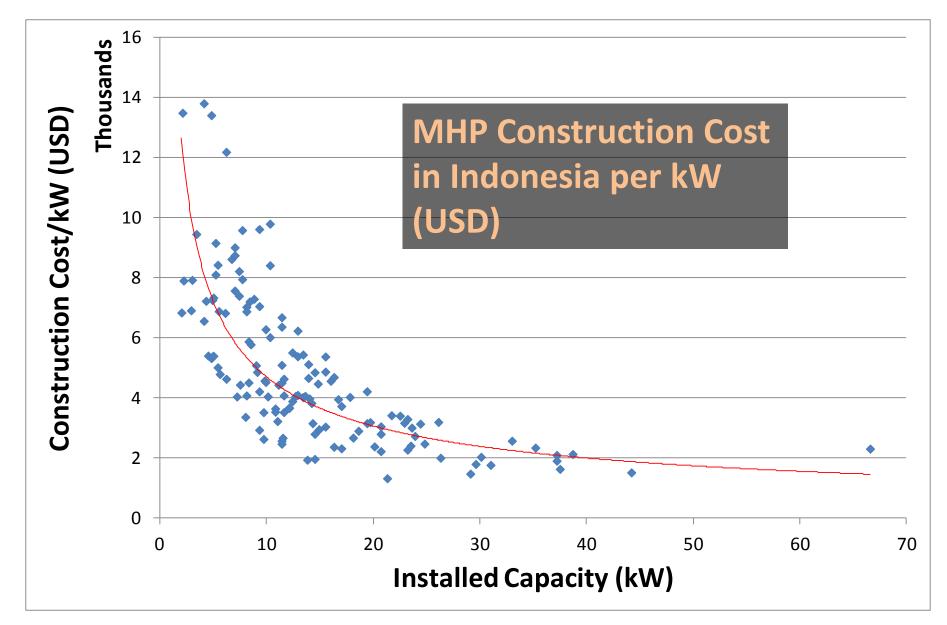
- Ministry of Energy and Mineral Resources
 - Regular/annual program funded by State Budget; since 1995
 - Main goal: electrify remote areas and increase electrification ratio
- Ministry of Cooperative and SME
 - Regular/annual program funded by State Budget; since 2005
 - Main goal: income generation for rural communitybased cooperatives

Technical components today "Made in Indonesia"

- Cross flow turbines up to about 1000 kW
- Pelton and (small and tubular) Propeller turbines
- Electric load controllers
- For Grid Interconnection: Synchronizer, Protection, and Cosphi Regulator

Local Added Value: Job Creation, Micro Hydro Associations, Regional Training Centre





ASEAN HYDROPOWER COMPETENCE CENTRE

Source: Ministry of Home Affair (TSU)

Source: Ministry of Home Affair (TSU)

Micro Hydro Project Management (for Government funded projects)

- Assets are **owned** by local (district or provincial) government.
- Community-based organization created to manage MHP system:
 - Operation & Maintenance: 2 operators, 1 head of management, 1 secretary
 - Total wages ~USD 2,000 per year
 - Collected revenue ~900 to 1,000 USD/month
 - Technical complexity: Most with ELCs; some with flowcontrol, plus synchronizer for grid interconnection.

When the National Grid Arrives

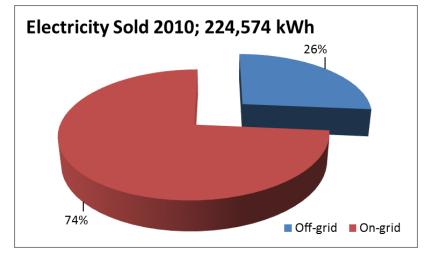
Case 1: MHP constructed by Government

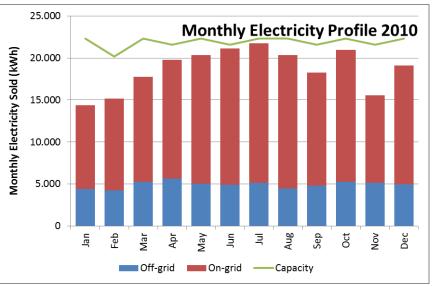
- Policy: No guidelines to feed into the national grid!
- Two different grids: mini-grid and national grid
- If the micro hydro project is well managed → Customers stay with mini-grid connection
- Example: Gunung Halu MHP, 20 kW, in West Java
 - MHP customers (20 households) keep utilizing the MHP
 - Monthly tariff: ca. USD 2.3 flat tariff for 900 W/HH
- If micro hydro NOT well managed → Customers who can afford, switch to national utility (initial connection fee ca. USD 150); and MHP likely to be abandoned.

When the National Grid Arrives

Case 2: MHP constructed by NGO

- Assets **owned** by local community/organisation.
- **Policy:** Allowed to connect to and feed into national grid in accordance to applicable FIT.
- Example MHP Kalimaron:
 - Originally constructed (1994) and operated as off-grid scheme;
 - With issuance of government legislation (no. 1122/2002), MHP Kalimaron connected to the National Grid in 2003 to sell surplus energy


Additional investments:


- Synchronizer, step-up transformer, on-grid lines, and transaction meter → about 6,000 USD (at 2003 exchange rate).
- Cost to fulfill technical standards (technical test etc.) about 750 USD (*normally* 1,000 – 5,000 USD)
- Relevant tariffs (all based on exchange rate 2017):
 - (old) MHP consumers pay 2.1 US¢/kWh (average)
 for comparison: PLN tariffs 3 / 5 / 11 US¢/kWh for up to 450 / 900 / 1300 W
 - National utility as "new customer" today pays 4.01 US¢/kWh as FiT

Case of MHP Kalimaron

Yearly Market Share

Capacity Factor (2010): 85%

Market	Energy		Revenue			
Market	kWh % USD		USD	%		
Electricity Sold and Revenue 2010						
Off-grid	59,304	26.41	1,840	15.83		
On-grid	165,270	73.59	9,788	84.17		
Total	224,574	100.00	11,628	100.00		

Community receives more than 6-fold revenues

Year 2010 price

Profile of Cascading MHPs at Seloliman

- Output (P) 30 kW (built 1994 with 12 kW, 1999 upgraded to 30 kW)
- Design Flow (Q) 300 l/s
- Net head (Hn) 14 meter
- Open channel (150m)+underground PVC pipe (70m)
- Penstock: Pipe Rolled Steel
 - Diameter 300 mm
 - Length 45 m
- 2003 grid connection to sell surplus!

- Output (P) 20 kW (built 2009)
- Design Flow (Q) 250 l/s
- Net head (Hn) 14 meter
- Head race: Open channel 500 m
- Penstock: Steel
 - Diameter 350 mm
 - Length 35 m
- **2010 both plants sell surplus to PLN!**

Grid Interconnection Regulations

- <u>IPP</u> Regulation: All produced power is sold to utility
 - Start from 2002 (Regulation No. 1122/2002)
 - FIT= **80%** of BPP of local system at medium voltage
 - FIT= **60%** of BPP of local system at low voltage

Note: **"BPP",** Biaya Pokok Penyediaan Pembangkitan, refers to Electricity Generation, Transmission and Distribution Cost, meaning it refers to **avoided cost of overall electricity system cost in province** (e.g. higher if most electricity comes from diesel power plants).

- Many regulation changes since then 2002.
- Latest regulation (No.12/2017) introduces FIT to market price:
 - i.e. Max FIT = **85%** of base BPP of local system
- Excess power: Only surplus sold to the utility

According to Regulation No.19/2017:

• Max FIT Excess Power = **90%** of BPP of local electricity system

→ Higher remuneration of feeding in of "excess power only" is incentivizing "local consumption" to reduce transmission and distribution cost

Results of Regulations Nine Off-Grid MHPs Converted to On-Grid

Year	MHP Location	Operator	Capacity (kW)	Cost in year of intercon. (USD)	FIT* (US Cent/kWh)	Yearly income in year of intercon. (USD)
1991/2005	Curug Agung, W. Java	Cooperative	12	12,000	0.84	3,200
1994/2003	Dompyong, E. Java	Cooperative	30	6,700	4.51	-
1994/2003	Kalimaron, E.Java	NGO	30	6,700	4	9,700
2004	Santong, Lombok - NTB	Cooperative	40	10,500	No-info	-
2005/2006	Salido Kecil, W Sumatera	Private	668	14,000	3.32	20,000
2008	Wot Lemah, E. Java	NGO	20	See above	4	6,700
2010	Krueng Kalla, Aceh	NGO	40	60,000	9.05	27,500
2012	Ciganas, W. Java	NGO	100	29,000	4.93	43,000
2013	Bakuhau, Sumba - NTT	NGO	35	14,000	3.95	18,000

Cascading MHPs at Seloliman Village

* Assuming 133 Rp = 1 US Cent (2017)

Results of Regulations Eight MHPs started as On-Grid

MHP Site	Operator	Year	Capacity (kW)	Cost in year of intercon. (USD)	FIT* (US Cent/ kWh)	Yearly income in year of intercon. (USD)
Waikelosawah	Community	2000	15	2,400	1.8	12,100
Cinta Mekar, W. Java	NGO	2004	120	30,200	3.91	54,600
Melong, W. Java	Cooperative	2004	100	-	3.2	-
Kombongan, W. Java	Cooperative	2006/20 09	65/165	-	No-info	-
Ulu Danau, S. Sumatera	Cooperative	2005	224	13,300	4.5	43,000
Sengkaling, E. Java	NGO	2007	100	-	No-info	-
Wanganaji, C. Java	Cooperative	2008	140	-	4.18	-
Banyu Biru, C. Java	NGO	2010	170	23,900	4.93	80,800

* Assuming 133 Rp = 1 US Cent (2017)

Grid Interconnection Benefits

• For the Utility

Access electricity that is **cheaper than its own avoided cost**; "distributed generation" **reduces risk** of total black-out.

- For community:
 - Technical

Improved capacity factor and improve electricity quality.

• Commercial

Generate **additional revenue** for community and/or project developer; Potential to develop a public-private partnership

• Socio-Economic

With **additional community revenue:** potential to promote **community development and rural livelihoods**, e.g. income generating activities, support local education, healthcare cultural activity, and watershed protection.

Environment

Generate awareness of the community on **environment** and improved water management (e.g. reduce trash in river); **Reduce CO₂** emission from utility's thermal power plants.

