# QINOUS



#### Rapidly Deployable Plug & Play Energy Storage Solutions

... for the Integration of High Renewable Share in Off Grid Applications

Busso v. Bismarck

#### The Need for Energy Storage in the Context of different RE-Scenarios

Advantages of a standardized solution

References & Work in Progress

#### "Fuel Saver" Scenario



Benefits:

First experience with solar 15%-25% Diesel Savings Down-Sites:

No reduction in diesel-running hours

Low-load diesel operation

#### "Lean Energy Storage" Scenario



Benefits:

Diesel-off during sun-hours 30-50% Diesel Savings Less Diesel-running hours Increase in power quality



Benefits: 80-95% Diesel Savings Nearly no Diesel-running hours



- Case 1: 0.80 \$/I with LCOE 0.33\$/kWh at diesel only case
- Case 2: 1.27 \$/I with LCOE 0.47\$/kWh at diesel only case

#### The Need for Energy Storage in the Context of different RE-Scenarios

Advantages of a standardized solution

References & Work in Prgoress

# How We See The Situation Today

Systems are:

- individually designed
- assembled from single components on-site
  - High engineering effort
  - Risk of malfunctions on site causing delay

Use of lead acid batteries:

- low cycle life
- need for ventilation
  - Short life expectancy with problem of toxic materials
  - Allows no closed housing concept

# The Alternative: Qinous Rapidly Deployable Energy Storage Solutions

#### Intelligent Plug & Play Energy Storage Solution



# All-in-One Energy Storage Solutions



Battery, inverter, control system, and other component supplier System integrator

EPC, IPP, project developer, utility,

## Functionality



Grid management

Battery management

Frequency and voltage regulation

Provision of reactive power

Provision of short-circuit current (200%) and support of in-rush currents

Grid formation and blackstart capability

Provision of spinning reserve

#### Qinous site control and monitoring system.



User friendly interface

Generator control via droop

PV / wind turbine control

Grid and load control

Communication protocols (CAN, Modbus, 60870-5, BacNet)

Remote monitoring and control via GSM/ internet

#### The Need for Energy Storage in the Context of different RE-Scenarios

Advantages of a standardized solution

References & Work in Progress

# Reference: 100kW Mini-Grid Demonstrator

30kW/80kWh Ahi

100kW/112kWh Li

100kW PV 100kW Load Simulator

100kW Diesel Genset







### References: Stadtwerke Münster

- Customer / location: Power / capacity : Technology:
- Application:
- Commissioned:

Municipal utility / Germany 55 kW / 112 kWh Lithium-ion energy storage City electro bus fast charging station April 2015



# Work in Progress: Tabarre PV Mini Grid, Haiti



Source: Biohaus Stiftung

Load: Power / capacity : Technology: Application: Commissioning: Annual saving: 3 Hospitals & Children Care Center
PV: 650kW/ ESS: 500 kW / 448 kWh (grid-forming)
Lithium-ion
Off-grid
planned Aug 2015
estimated 440.000 USD Diesel

# QINOUS

> Thank you for your Attention.

Busso v. Bismarck bismarck@qinous.com

# Standardized Storage Solutions in action providing stable frequency and voltage in Microgrids

Diesel + PV + Load



#### Line Frequency 56.0 450.0 55.0 54.0 [=H] 53.0 350.0 52.0 Ξ - E 51.0 300.0 50.0 49.0 250.0 55:50 56:40 57:30 Zeitachse Current Line Frequency: 50.15 400.2 V Hz Current Line Voltage:

#### Diesel + PV + BATTERY + Load



Line Frequency



the ginous site controller and Battery Solution in action pro-viding quickly short-circuit current to trigger the safety devices

