Optimal Design of Renewable Based Mini-grid Systems – Opportunities and Challenges

Alexander Ryota Keeley Ph.D.

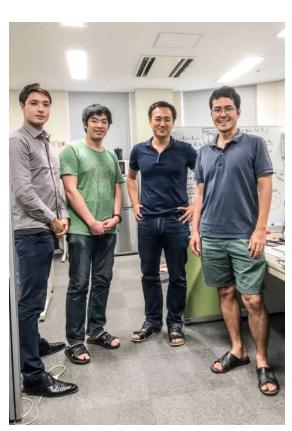
- Department of Urban and Environmental Engineering, Kyushu University (Assistant Professor)

- Itoshima Mini-hydro Energy Co., Ltd (Founder)

[Self-introduction]

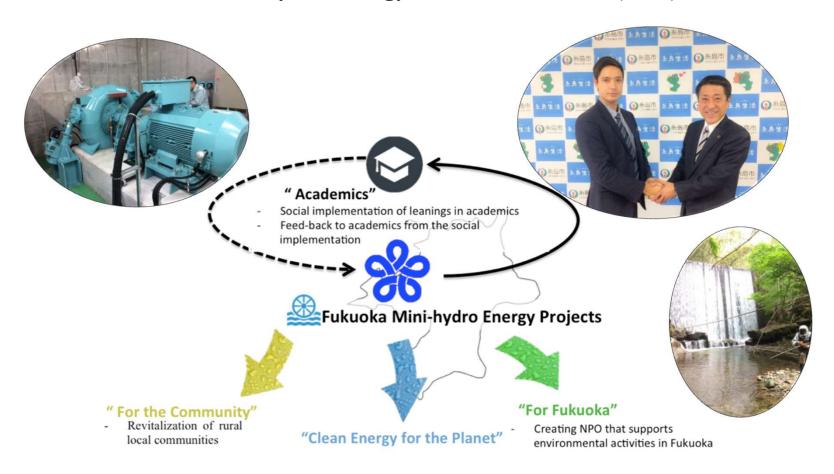
Technology and Policy Department of Urban and environmental Engineering, Kyushu University - Assistant Professor

Environmental Economics; International


Economics; Energy Economics

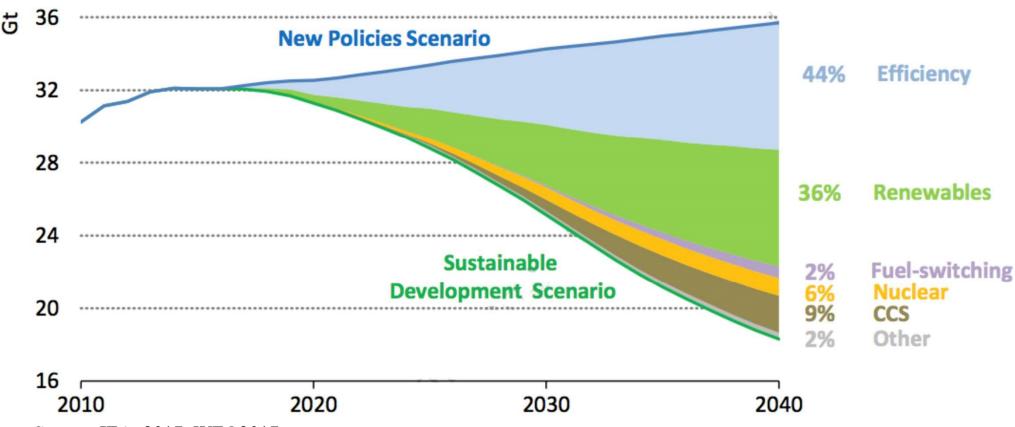
Special Interests:

Economic Policies; Renewable Energy; Finance

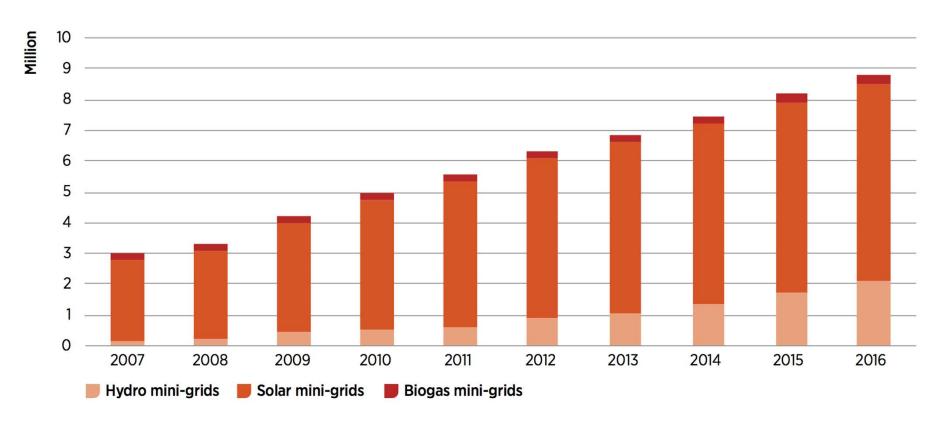

and Investment

 Working on:
 Energy Market Analysis; Impact Assessment of RE Project; Inclusive Wealth Index

[Self-introduction]

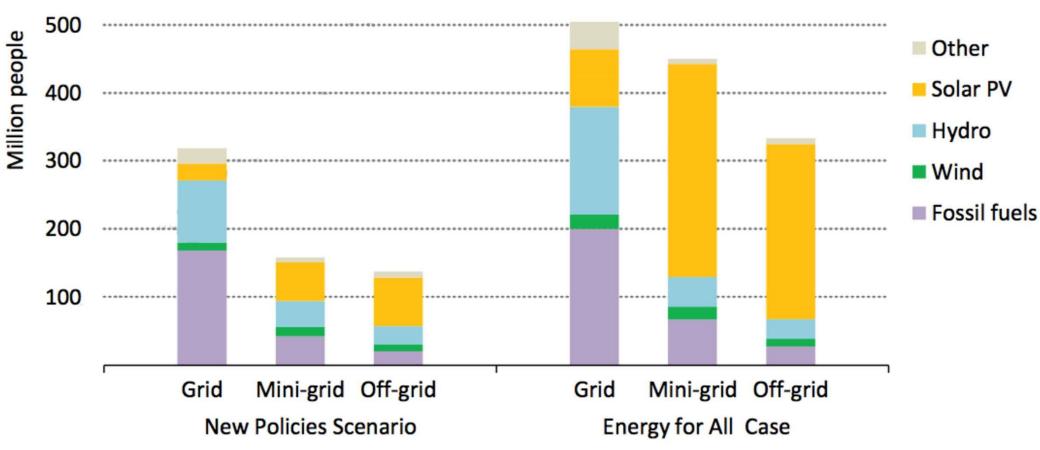

Itoshima Mini-hydro Energy Co., Ltd - Founder (2016)

[Background]


Driverts of the reduction in CO2 emissions to meet the 2C warming limit

Source: IEA, 2017: WEO2017

[Background]


Number of people connected to renewable energy mini-grids by technology (2007-2016)

Source: IRENA, 2018

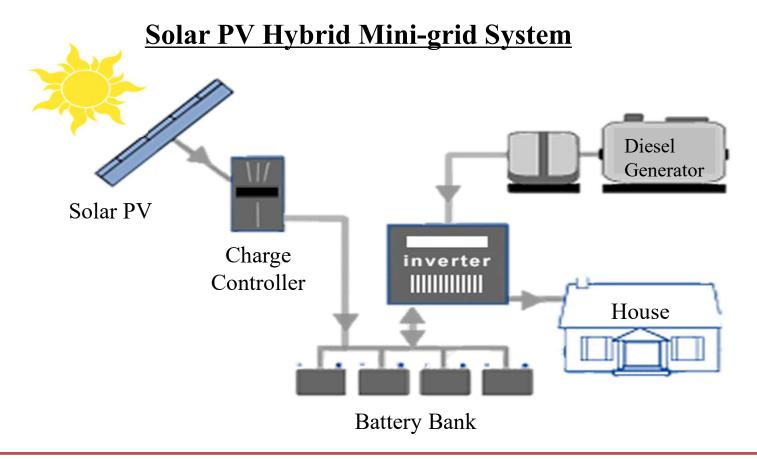
[Background]

Population gaining access to electricity by scenario (2017 - 2030)

Source: IEA, 2017: WEO2017

* "Energy for All Case" would cost a total of around \$800bn

(Contents)

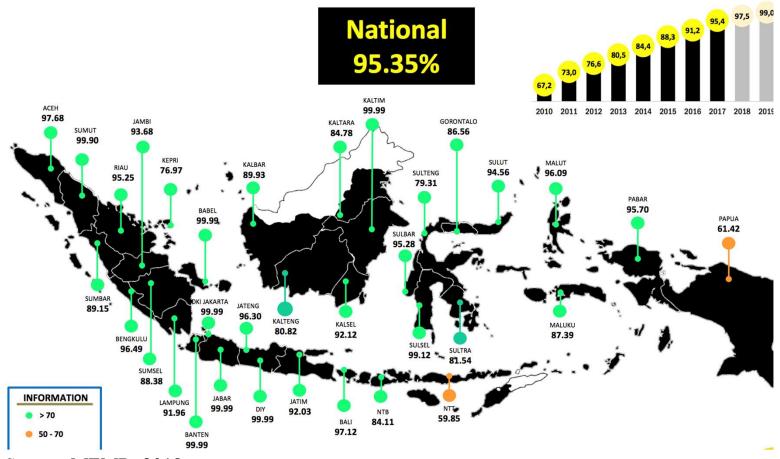


- Optimal design of renewable based mini-grid systems Method: LCOE (Levelized cost of energy) analysis
- 1) The case of Indonesia
 - Comparison between Solar PV Hybrid (with Diesel) and Diesel based mini-grid systems
- 2) The case of Myanmar
 - Comparison between 100% Renewable Hybrid (Solar PV and Wind) and Diesel based mini-grid systems
- DRM measures for Resilient Mini-grid Systems

Optimal design of renewable based mini-grid systems LCOE analysis: *Indonesia*

Question:

- 1) Are Solar PV Hybrid Mini-grid Systems economically viable compared to conventional Diesel Systems?
- 2) Can Solar PV Hybrid Mini-grid Systems attract private investments?

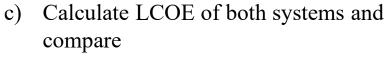

Optimal design of renewable based mini-grid systems LCOE analysis: *Indonesia*

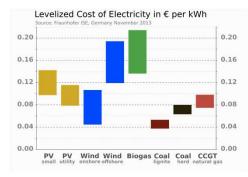
Key Takeaways:

- I. Compared to conventional Diesel systems, LCOE of **Solar PV Hybrid system** is <u>lower even under the most conservative case</u>

 <u>with 100% equity financing</u> (WACC:14.34%)
- II. The Solar PV Hybrid system becomes financially viable with grant finance that covers around 1/3 of the total cost
- III. Pure equity financing greatly reduces the financial viability of the investment compared to that of D/E of 4, 1, which highlights the importance of access to low-cost finance for attracting private investments

- 95% electrification rate, with a total installed capacity of 61 GW (as of 2017)
- 10 million people still lack access to electricity most of whom reside in extremely remote villages

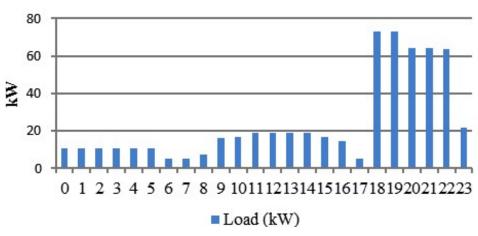



Source: MEMR, 2018

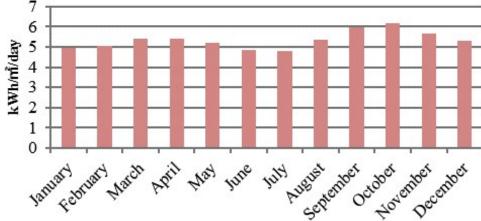
Methods

- (1) Compare Levelized cost of energy (LCOE) of the two Systems: Renewable Hybrid Mini-grid Systems and Diesel Mini-grid Systems
- a) Build Optimized Mini-grid systems using HOMER
 - Generator 1
 Primary Load 1
 722 kWh/d
 51 kW peak
 PV
 Grid
 Converter

 AC
 DC
- b) Calculate weighted average cost of capital (WACC) for three different financing scenarios: Debt/Equity Ratio 4, 1, 100% Equity


- (2) Analyze Internal Rate of Return (IRR) and Net Present Value (NPV) of the Hybrid Systems
 - a) Calculate IRR and NPV with different grant ratio: from 0% up to 50%

<u>Data</u>


A generic village with 1,475 people in 350 households in Nusa Tenggara Timur (NTT) is chosen as an assumed project site

Electricity demand profile of the generic village

Renewable Resources: Solar Irradiance at the assumed project site

Source: NASA Surface Meteorology and Solar Energy database

Data

Average component prices and O&M costs for solar PV, batteries, converters, and grid networks in Indonesia

Commonto	Sustan Cost	O&M Cost	Replacement
Components	onents System Cost O&M Cost		Cost
Solar PV	US\$2,100/kW to	US\$10/cm/kW	
Solar PV	US\$3,150/kW	US\$19/yr/kW	
	US\$180/unit to		
D 1	US\$270/unit (1kWh	110010/	US\$150/unit to
Batteries	generic Lead Acid	US\$10/yr/unit	US\$225/unit
	Battery)		
	US\$900/kW to	11007.0/ 4.11/	US\$800/kW to
Converters	US\$1,350/kW	US\$7.8/yr/kW	US\$1,200/kW
Diesel	US\$650/kW	US\$0.05/hr/kW	US\$650/kW
Generators	US\$630/KW	US\$0.05/nr/kW	US\$650/KW
Transmission	11062 0004	LICELCO/ A	
Infrastructure	US\$2,000/km	US\$160/yr/km	-
Fuel Cost	\$0.5007/litter to		
ruei Cost	\$1.367/litter		

Summary of Inputs for Calculation of WACC

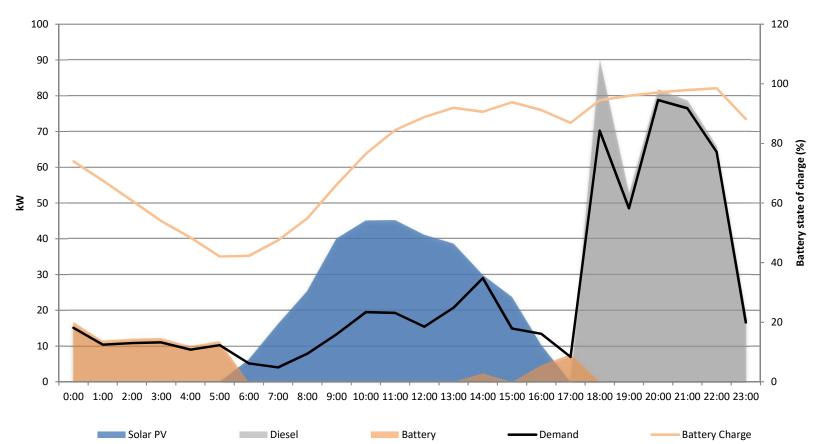
Risk Free Rate	7.62% ^a
Market Risk Premium	$8.0\%^{b}$
Beta	0.84 ^c
Cost of Equity	14.34%
Cost of Debt	12.27%
Corporate Tax Rate	25%

^a Based on Indonesia Government Bond 10Y (as of April 2016), ^c Calculated based on the Risk Free Rate and the Market Risk Premium

provided by the Ministry of Energy and Mineral Resources of the Republic of Indonesia in June, 2016

Results

(1) LCOE of Renewable Hybrid Mini-grid Systems and Diesel Mini-grid Systems LCOE in the reference case (11.77%)

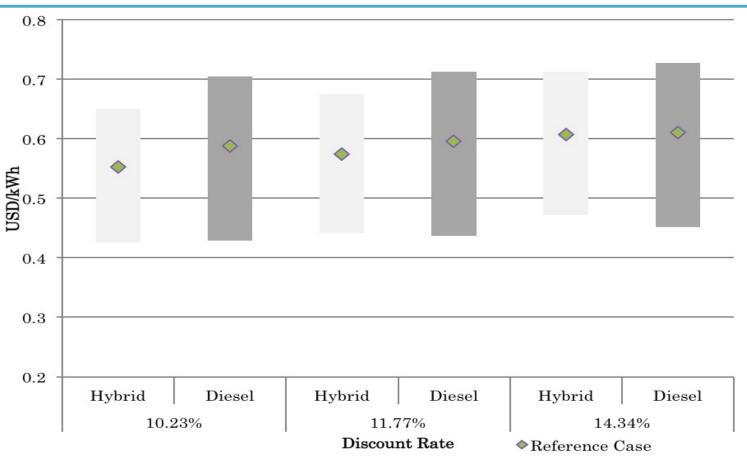

WACC for	three	different
scenarios		

D/E Ratio	WACC
4	10.23%
1	11.77%
100% Equity	14.34%

System	ion	LCOE		
	Solar PV	60kw		
	Diesel Generator	140kw		
D	1kwh Lead Acid	200		
Renewable Hybrid Mini-grid system	Battery	200 strings	\$0.57	
	System Converter	30 kw		
	Transmission			
	Infrastructure	3.5km		
	Diesel Generator	140kw		
Diesel Mini-grid	Diesel Generator	30kw	\$0.60	
system	Transmission			
	Infrastructure	3.5km		

<u>Results</u>

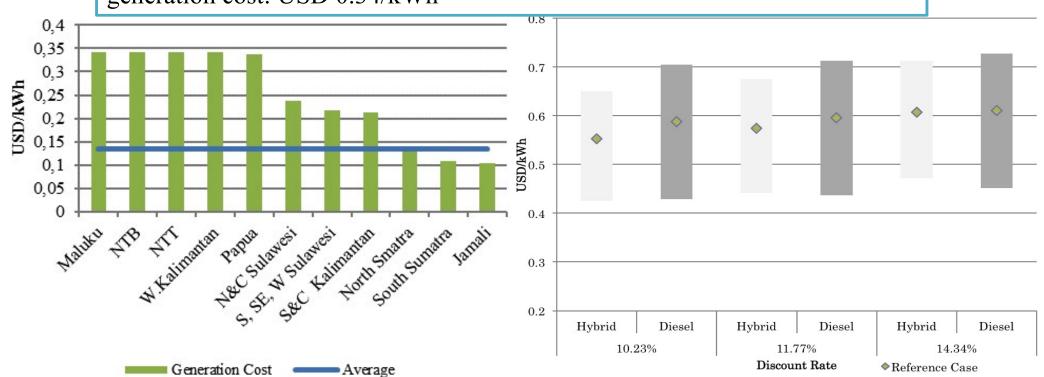
(1) LCOE of Renewable Hybrid Mini-grid Systems and Diesel Mini-grid Systems How demand is met with Renewable Hybrid Mini-grid System


60kw of Solar PV:

- Provides over 40% of the total generation
- Cuts CO₂ emission by approximately 66% over the 25 year lifetime of the system.

Results

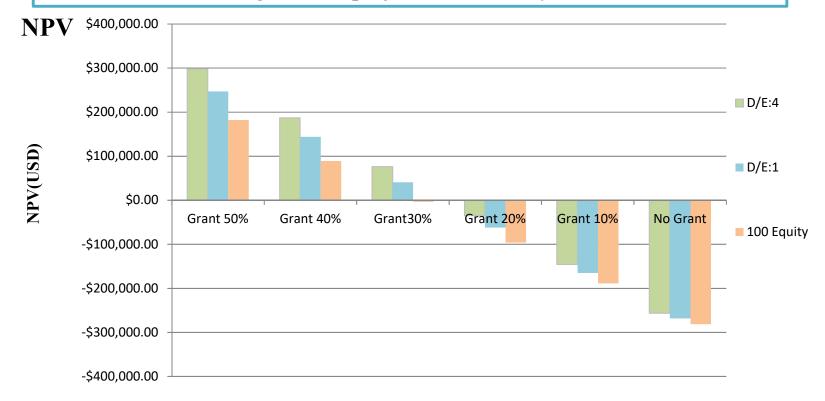
(1) LCOE of Renewable Hybrid Mini-grid Systems and Diesel Mini-grid Systems


In the reference cases, LCOE of **Hybrid Systems** is **lower even under the most conservative case with 100% equity financing** (WACC:14.34%)

Results

(1) LCOE of Renewable Hybrid Mini-grid Systems and Diesel Mini-grid Systems

However, the LCOE of the Hybrid system is still higher than the national grid generation cost: USD 0.34/kWh

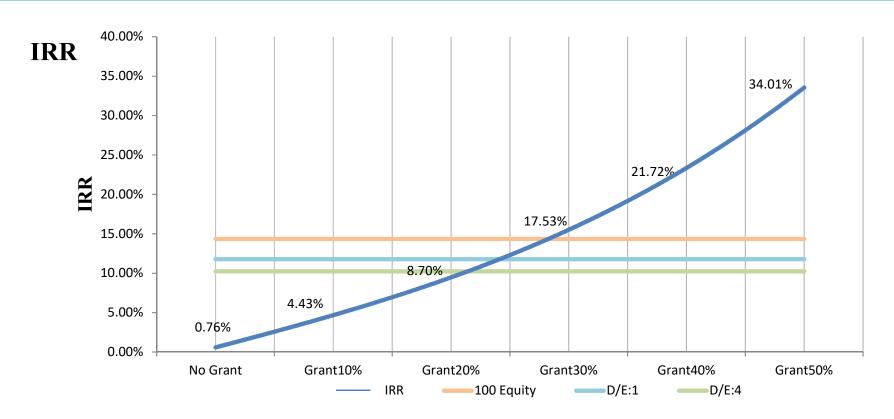

Results

(2) Analyze IRR and NPV of the Hybrid Systems

Three financing scenarios are examined: D/E of 4, 1, and 100% equity, with grant finance ranging from 0% to 50% of the total cost of the project

Pure equity financing greatly reduces the financial viability of the investment

With around 35% of grant, the project is financially viable in all scenarios

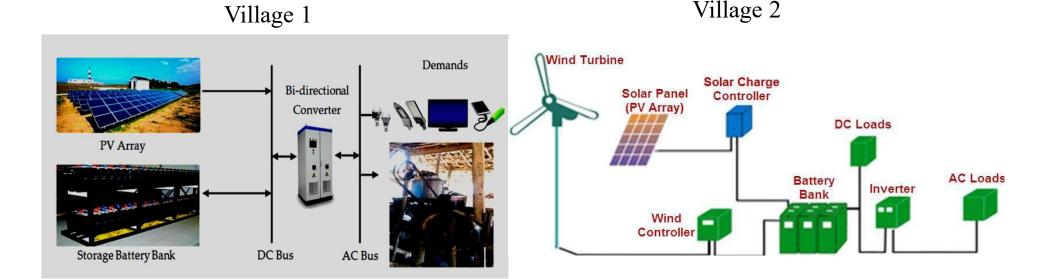


Results

(2) Analyze IRR and NPV of the Hybrid Systems

Three financing scenarios are examined: D/E of 4, 1, and 100% equity, with grant finance ranging from 0% to 50% of the total cost of the project

With around 35% of grant, the IRR of the project is higher than the WACC of all scenarios


Optimal design of renewable based mini-grid systems LCOE analysis: *Myanmar*

100% Renewable Mini-grid System

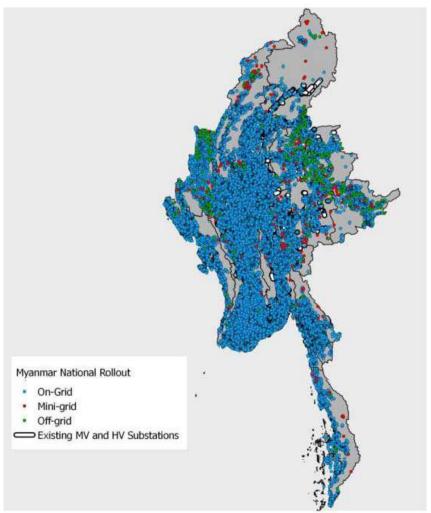
Village 1: Comparison between 100% Solar PV and Diesel based mini-grid systems

Village 2: Comparison between 100% Renewable Hybrid (Solar PV and Wind) and Diesel based mini-grid systems

Question:

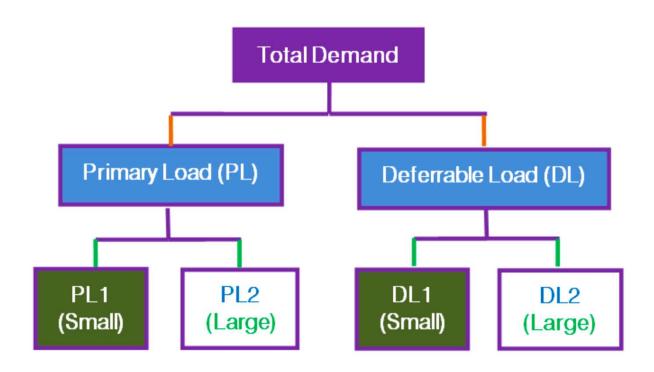
- 1) Are 100% Renewable Hybrid Mini-grid systems economically viable compared to conventional Diesel based systems?
- 2) To what extent the size of Demands (Loads) affect the LCOE?

Optimal design of renewable based mini-grid systems LCOE analysis: *Myanmar*


Key Takeaways:

- I. The LCOE of 100% Renewable based systems (both pure Solar PV, and hybrid Solar PV and Wind) is already quite compatible with that of conventional Diesel systems
- II. The economies of scales (driven by demands/loads) is large for 100% renewable hybrid systems, which highlights the importance of finding and creating adequate demands/loads

Electrification rate: 40.7% (June 2018)

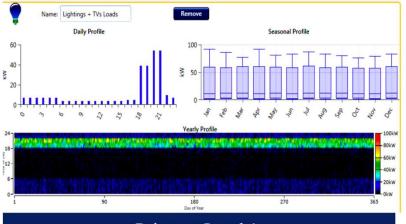

• The Government of Myanmar, with the help of the World Bank, has developed a National Electrification Plan that calls for universal electricity access by 2030

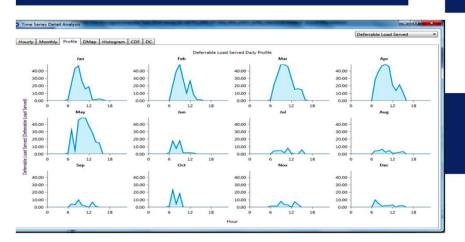
Source: DRD, 2015

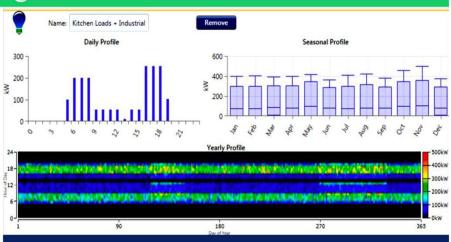
Different Types of Loads

Examples of DL:

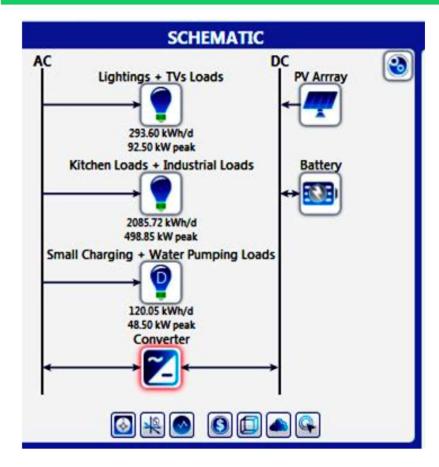
Water Pumping Systems


Small Industrial Works

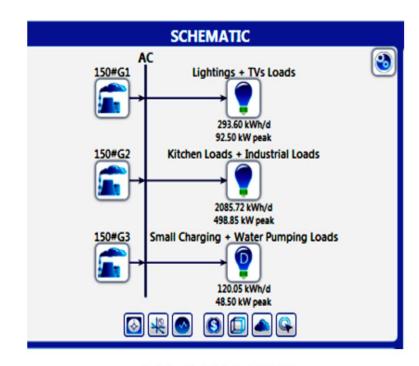




Primary Load 1
Lighting + TV Loads → 293.6 kWh per day
with 92.5 kW peak

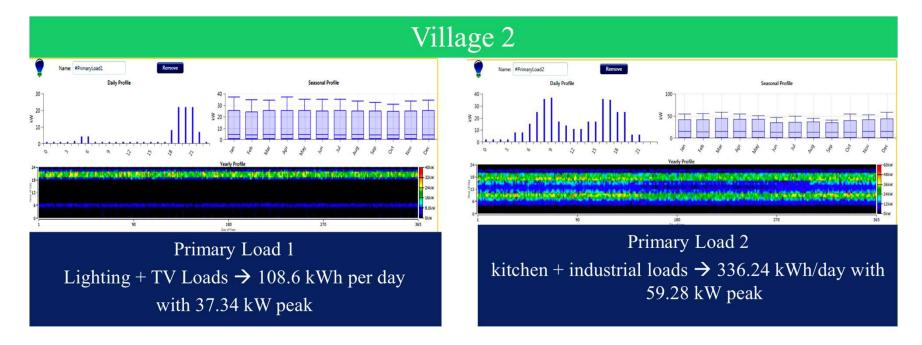

Primary Load 2
kitchen + industrial loads → 2085.72 kWh/day with
498.85 kW peak

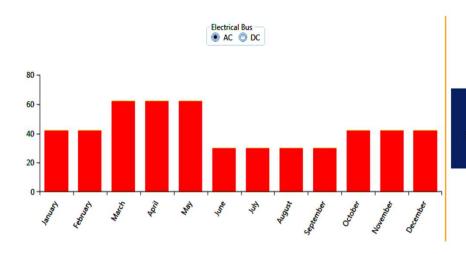
Deferrable Load


small charging & water pumping loads

→ 120.05 kWh per day and 48.5 kW peak

Different Models for Village 1

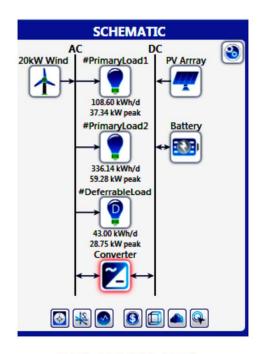


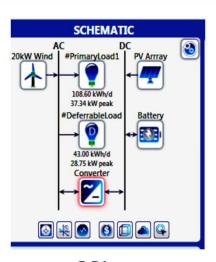

M2 (100% NRE)

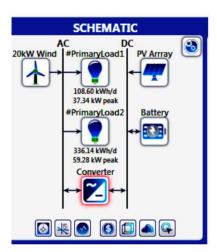
【2 - Myanmar】

<u>Results</u>

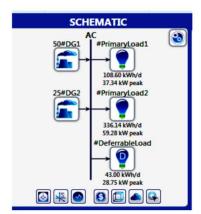
Model	Design	Annual	COE	Net	Opera-	Initial		Diesel 1	Fuel	
		Production	(\$)	Present	ting	Capital	Each	Total	Each Cost	Total
		(kWh/yr)		Cost	Cost	(\$)	(L/yr)	(L/y)	(\$/yr)	Cost
		43		(\$)	(\$/ yr)			V380	0.00 0.000	(\$/yr)
PV	PV	1536344	0.289	63 M	132826	1.57 M	_	-	-	-
MG	(1032 kW)									
(100%	Battery	434801								
RE)	(2436	(Through-								
	kWh)	put)								
	Converter	808240								
	(292 kW)									
Diesel	DG1	729061	0.273	3.77 M	235986	105000	220261	288348	136562	178776
MG	(150 kW)		(at	(at 0.62	(at 0.62	105000			(at 0.62	(at 0.62
(100%			0.62	\$/L)	\$/L)				\$/L)	\$/L)
NRE)			\$/L)	4.85 M	264619				158588	207610
			0.307	(at 0.72	(at 0.72				(at 0.72	(at 0.72
			(at	\$/L)	\$/L)				\$/L)	\$/L)
	DG2	227535	0.72				68087		42214 (at	
	(150 kW)		\$/L)						0.62 \$/L)	
									49022	
									(at 0.72	
									\$/L)	




Deferrable Load small charging & water pumping loads →43 kWh per day and 28.75 kW peak


Different Models for Village 2

Model	Components	Demands
Model1 (M1)	PV-Wind-Battery Hybrid	PL1 and DL
Model2 (M2)	PV-Wind-Battery Hybrid	PL1 and PL2
Model3 (M3)	PV-Wind-Battery Hybrid	PL1, PL2,and DL
Model4 (M4)	Diesel Generators (50 kW & 25 kW)	PL1, PL2,and DL


M3 (100% RE)

M2

M1

M4 (100% NRE)

【2 - Myanmar】

<u>Results</u>

Model	Design	Capacity	Annual Production/	Cost of	Net Operatin Present g	Capital	Diesel Fuel			
			Throughput (kWh/yr)	Energy (\$)	Cost (\$)	Cost (\$/ yr)	(\$)	(L/yr)	(\$/L)	(\$/yr)
M1	PV	29.4 kW	43504	0.597	479476	13990	262097	-	-	-
	Wind	60 kW	122876							
	Battery	144 kWh	19037							
	Converter	28.8 kW								
M2	PV	84.8 kW	125593	0.388	909898	29893	448220	-	-	-
	Wind	140 kW	286711							
	Battery	270 kWh	38361							
	Converter	55.7 kW	-							
M3	PV	87.1 kW	129044	0.352	902973	29267	448223	-	-	-
	Wind	160 kW	327670							
	Battery	243 kWh	34360							
	Converter	54.3 kW	÷							
M4	DG1	50	137742	0.351	970515	53937	132429	45057	0.62	27935
									0.72	32441
	DG2	25	45975					16867	0.62	10457
									0.72	12144

Yearly Plan of Off- Grid Electrification Program (2016~2021)

Sr.	Fiscal Year	SHS		Mini-Grid		To	Remark	
		Village	Household	Village	Household	Village	Household	
1	2016-2017	2708	141465	10	1503	2718	142968	Complete
2	2017-2018	1366	88019	35	6868	1401	94887	Complete
3	2018-2019	2455	132368	100	10000	2555	142368	On-Going
4	2019-2020	1500	122950	100	9095	1600	132045	Plan
5	2020-2021	1500	128550	100	7380	1600	135930	Plan
	Total	9529	613352	345	34846	9874	648198	

Source: DRD, 2019

63 kW Solar Mini-Grid System combined with 50 kW(Diesel Backup System)

110 kW Solar Mini-Grid System

30.72 kW Solar Mini-Grid System combined with 24 kW(Diesel Backup System)

DRM measures for developing Resilient Mini-grid Systems

Enhancing Disaster Preparedness and Responses

Preparedness

Quality of hardware:

Develop certification and standards for hardware; adopt internationally recognized standards and share best practices (i: enforce standards for technical performance and safety; ii: mandate minimum warranties for component)

Responses

Availability of hardware:

Ensure an open, competitive marketplace for buying hardware (i: reduction of customs administrative steps and public response timelines; ii: introduction of import tariff holidays and VAT exemptions)

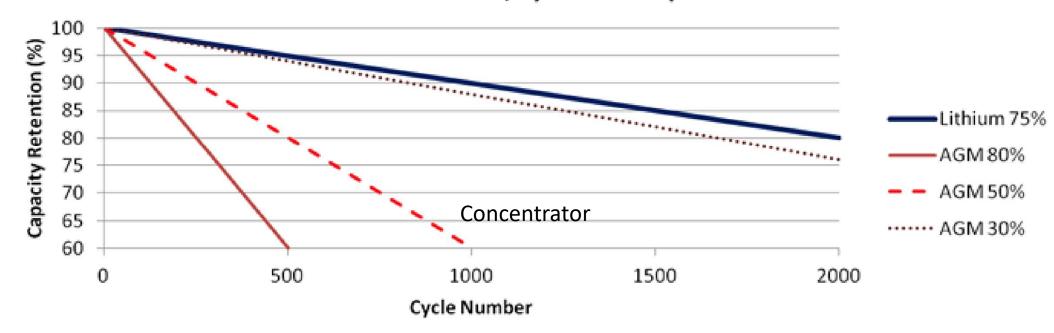
Disaster insurance:

Disaster insurance for RE is becoming common, but not yet available for mini-grid systems

*Risk assessment of mini-grid systems is not easy — disaster insurance for mini-grid systems could be developed initially via multi-stakeholder collaboration (government, international organizations and agencies, insurance companies)

Optimal design of renewable based mini-grid systems <u>Key Takeaways:</u>

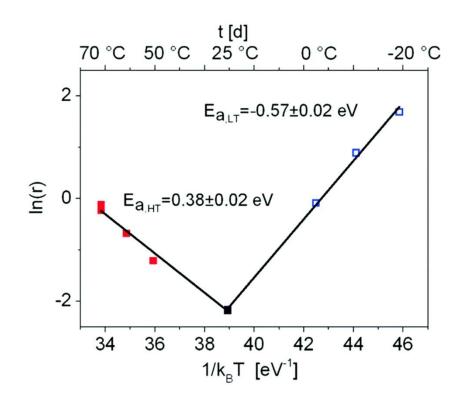
- I. Solar PV hybrid systems (with Diesel) are becoming cost-effective solutions in increasing number of locations
- II. 100% Renewable based systems (both pure Solar PV, and hybrid Solar PV and Wind) are also already quite compatible with conventional Diesel systems in remote areas
- → Economic aspects (costs) are not anymore the largest barriers, but still there are measures that could further lower the costs (e.g. access to low cost finance)
- Regulatory and Institutional barriers need to be overcome
- <u>Disaster resilience, sustainability of the systems need to be carefully considered</u>


Thank you

Supplemental Materials

Resilient Design: Choice of batteries

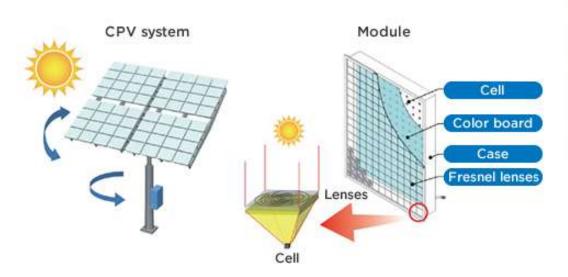
Moderate Climate, Cycle Life comparison


*AGM: Lead acid batteries. %: Depth of discharge

- In hot climates (average 33°C), the disparity between lithium-ion and lead acid is further exacerbated
- The cycle life for lead acid drops to 50% of its moderate climate rating while lithium-ion will remain stable until temperatures routinely exceed 49°C

Resilient Design: Choice of batteries

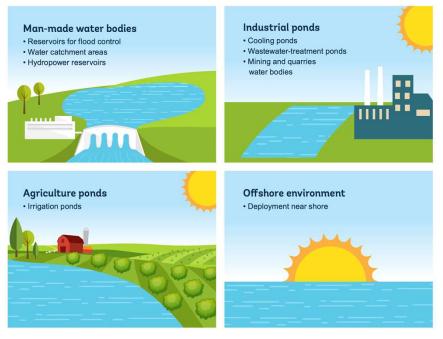
Temperature	40% charge	100% charge
0°C	98% (after 1 year)	94% (after 1 year)
25°C	96% (after 1 year)	80% (after 1 year)
40°C	85% (after 1 year)	65% (after 1 year)
60°C	75% (after 1 year)	60% (after 3 months)


 Exposing the battery to high temperature and dwelling in a full state-of-charge for an extended time can be more stressful than cycling

Between 25 °C and 70 °C, the ageing rate increases with increasing temperature and the trend is reversed between 25 °C and –20 °C. At high temperature transition metal dissolution is enhanced while at low temperature, the predominant ageing mechanism is lithium plating and subsequent reaction with the electrolyte, leading to loss of cyclable lithium.

Resilient Design: Solar PV

1) Concentrator Solar PV (CPV)


Sumitomo Electric Industries, Ltd. is designed for high solar radiation, and high-temperature areas (Morocco, Australia etc.). The impact of high temperature on the efficiency is negligible compared to silicon solar cells. 2) Floating Solar PV (FPV)

Source: © Ciel & Terre International.

Source: © Ciel & Terre International.

Resilient Design: Data for Flow Duration

1) Large river – 50kW mini-hydro

Site Specific Flow Duration Curve is not too important for the design. Design could be made based on available data (nearby dams, simulation data).

2) Small streams

Site Specific Flow Duration Curve is very important for the design. Design should be made based on high-accuracy data.

