Fraunhofer

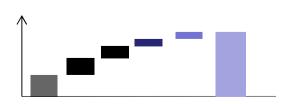
Tools to assess socio-economic impacts

World Future Energy Summit 2015, Abu Dhabi, UAE Workshop on the socio-economic impacts of renewable energy, 19th of January 2015

Dr. Barbara Breitschopf, Fraunhofer-ISI, Germany Dr. Ulrike Lehr, Institute for Economic Structures Research, Germany

On behalf of:

On behalf of



Are economic impacts adding up?

- Can we put all benefits into one pot?
 - + avoided emissions
 - + less imports of fossil fuels
 - + decrease in technology cost
 - + price effects at the whole sales market
 - + increase in investments and sales (manufacturers)
 - + increasing employment in "RE-sectors"
 - Σ benefits of RE deployment

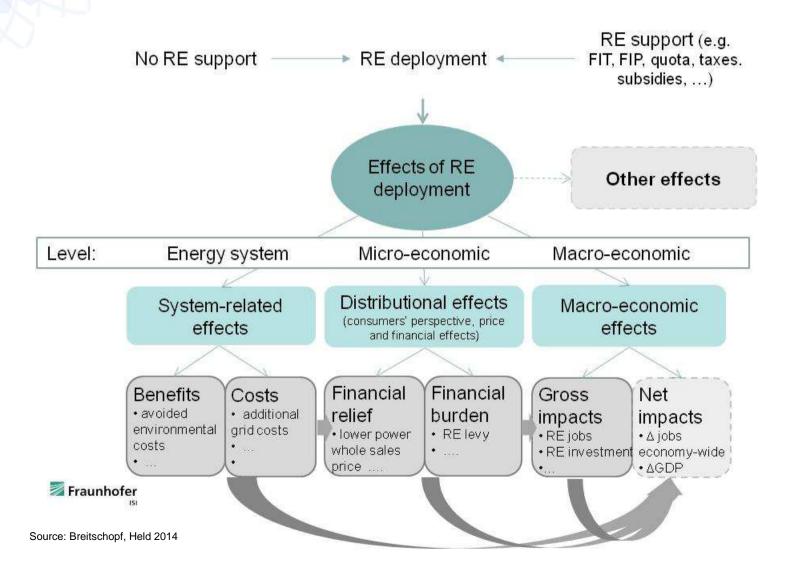
Are all economic impacts benefits?

- ... but there are benefits and costs
 - occur at different levels:
 individual household, energy sector, public budget, economy
 - affect different actors differently:
 - © RE installation, fossil fuel based generator
 - are in some cases counted twice:
 avoided emissions, decreasing imports
 - cannot be simply added across levels and actors
- → call for a comprehensive and clear concept

Approach – starting point of the analysis:

- 1. which **effects** can be observed from RE deployment? investments, expenditures, value added, profits
- 2. at which **levels** do these effects occur: individual, energy system, sector, macro level?
- who is (how) affected → actors
 single households, RE manufacturers, fossil fuel based generators,
 fossil fuel suppliers

4. how do these effects **relate** to each other? less/more expenditures for electricity → more/less income available for other consumption? more investments in RET → more manufacturing or import of technologies? less fossil fuel imports → less subsidies or tax revenues for public budget?



Socio-economic impacts

System-related costs and benefits

- System level perspective: include all benefits and costs of a system (RET) and compare them to a reference system (no RET)
- Definition of "system" may vary
 - energy sector
 - final energy sector: electricity, heat or transport
 - technology system
- Problem to assign cost and benefit to → technology level
 Generation costs → direct allocation to technology
 Grid infrastructure cost → only indirect allocation to technology
- Avoid double counting
 Include CO₂ costs either in generation costs or in benefits from avoided CO₂ emissions



Distributional effects

- micro level perspective
- induced by **policies** (policy dependent)
- affect different actors differently e.g. electricity bill of individual, generators

- depict changes in costs (benefits), prices, quantity or quality for different actors e.g. improved access to power
- cannot always be aggregated
- reflect the final remaining costs or benefits of RET deployment and RE policies for private households, firms, public households,

(scientific term: : changes in consumer / producer surplus, transitional effects, change in utility, capitalization effects, scarcity rents)



Macro-economic effects

- - -

- effects at the macro level:
 - > selected sectors, e.g. at the RE sector level
 - → sector specific effects (mainly gross effects)
 - ➤ all sectors of the economy, i.e. in all industries and services of an economy
 - → economy wide effects (mainly net effects)
- tool/model based assessment
- challenging to delineate impact between sector specific and economy wide effects

The Toolbox - Embarrassment of Riches

Graph: yeomansmarketing.co.uk

- How can we assess the socioeconomic impacts?
- How can we produce meaningful numbers?
- Are the data available? Which data are needed?
- Is the budget available? How much is needed (Time and Money)?
- Who knows how to use this tool?
- What are the risks if I use the tool 9 wrongly?

Deciding the scope

Geographical

- Country
- Larger Region,e.g. Arabregion,
 - Europe..
- Smaller
 Region, e.g.
 South Tunisia,
 Nile delta,
 Bavaria

Technological

- All RE
- All RE&EE
- Only Power generating
- Single technology

Economic sectors

- All including households, consumption
- All production sectors
- Mainly SMEs
- Mainly RE&EE sector

How can we measure which effect?

RE sector studies	Impact studies beyond RE industry – but not economy wide	Economy-wide impact studies	Effects
employment factor approach supply chain analysis			direct (+)
IO modelling			direct and indirect (+)
	employment factor approach with scenario comparison (RE and CE industry)		direct and indirect (+ , -)
	IO modelling including an adjustment of the consumption vector (electricity prices)		direct and indirect (+) induced (-)
		full economic model with scenario comparison	direct and indirect (+ , -) induced (+ , -)

Source: Breitschopf, Nathani, Resch 2013

The employment factor approach

Employment factors (EF) provide a direct link between the physical units (Capacity installed of wind turbines, cubic meter of fuel wood) and employment

- Simple multiplication leads to an estimate of employment
- Transfer of EFs from one region to another required knowledge and data about the respective production and service structures
- The literature knows a very wide range of EF, because:
 - Indirect effects are included
 - Different system boundaries, different scales are mixed. E.g.
 jobs/MW PV for roof-top installation is not the same as for large
 solar parks

Calculation of jobs based on the employment factor approach

		PER YEAR		FOR HEAT		MULTIPLIER		
HEAT SUPPLY	=	MW INSTALLED	×	EMPLOYMENT FACTOR	×	REGIONAL JOB		
FUEL SUPPLY (COAL, GAS & BIOMASS)	=	PRIMARY ENERGY DEMAND + EXPORTS	×	FUEL EMPLOYMENT FACTOR (ALWAYS REGIONAL FOR COAL)	×	REGIONAL JOB MULTIPLIER	×	% OF LOCAL PRODUCTION
FUEL SUPPLY (NUCLEAR)	=	ELECTRICITY GENERATION	×	FUEL EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
OPERATION & MAINTENANCE	=	CUMULATIVE CAPACITY	×	0&M EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
CONSTRUCTION	=	MW INSTALLED PER YEAR	×	CONSTRUCTION EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
MANUFACTURING (FOR EXPORT)	=	MW EXPORTED PER YEAR	×	MANUFACTURING EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
MANUFACTURING For Local USE)	=	MW INSTALLED PER YEAR IN REGION	×	MANUFACTURING EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER	×	% OF LOCAL MANUFACTURIN

Source: Rutovitz and Harris 2012

Input Output Analysis

Economic tool for the analysis of direct and indirect effects

- Goes back to Wassily Leontief (Nobel prize 1973)
- o Illustrates the effects of additional demands in one industry on all industries in the economy
- Input-Output Tables (see next slide) are available for more than
 100 countries in the world
- Consistent analytical framework which helps to connect RE deployment analysis to economic analysis already done for other sectors or the whole economy

Inputs and outputs of the wind industry

Inputs (examples)	Production structure	Steel needs Steel and energy	Wind industry needs Steel and inputs from the wind industry	Construction needs steel and concrete		
Steel industry produces	Steel	Value of inputs from steel to steel	Inputs steel to wind	Scaffolding, reinforcement		
Wind industry produces turbines, generators, nacelles etc.	Wind industry		Inputs wind to wind			
Construction sector gives inputs to wind industry and to residential sector	Construction	Steel industry needs new buildings	Construction to wind (roads, towers, new buildings)			
Inputs produced in other countries	Imports		Imported inputs			
Value Added	Compensation of employee					
	Profits 15					
Total output	Total output produced with material input and labor	-				

More than industry and services

Full model of the economy

Models differ by economic theory and philosophy

- Computable General Equilibrium (few data)
- Macro-econometric (full system of national accounts and balances, time-series)
- Other simulation models (agent based, system dynamics) (full SNAB)

All include feedback reactions, distribution effects and adjustments of the economy

What can economic models do for the policy maker?

- > tell them how relevant the RE sector is for the economy
- show how strongly the economy depends on RET
- > show the number of jobs in the "RE sector" (per RET field)
- > show the overall impact of RE use on the economy

Thank you for your attention

Dr. Ulrike Lehr

Institute for Economic Structures Research.

GWS mbH

Heinrichstr. 30, 49080 Osnabrück, Germany

Phone: +49 (0) 541 490 33 280

lehr@gws-os.com

www-gws-os.de

Dr. Barbara Breitschopf

Competence Center Energy Policy and

Energy Markets

Fraunhofer Institute for Systems and

Innovation Research ISI

Breslauer Str. 48, 76139 Karlsruhe, Germany

Phone: +49 (0)721 6809 356

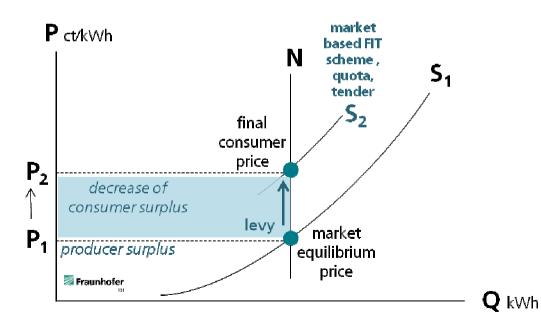
mailto:barbara.breitschopf@isi.fraunhofer.de

http://www.isi.fraunhofer.de

Back up

Distributional effects

Many distributional effects: transitional effects, change in utility, capitalization effects, scarcity rents, make analysis very challenging

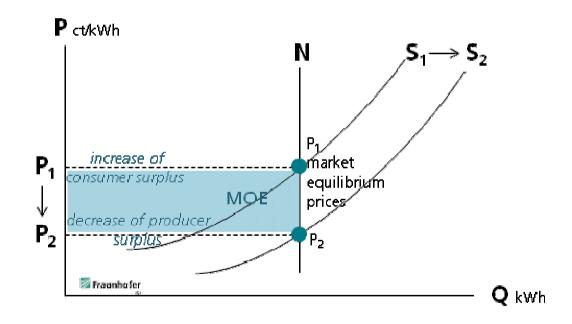

... so analysis focuses on:

changes of consumer surplus:

price increases at the retail market for final consumers due to levies (-)
→ FIT levy, tender or quota effect

price decrease at the whole sales market due to supply shifts (+)

→ MOE



Distributional effects

changes of producer surplus:

lower prices at the whole sales market due to supply shift e.g. lignite based power generators receive lower market price (-) → MOE

generators of RE power receive a premium (tariff > market price, TGC, ...) (+)
→ FIT, quota, tender

