

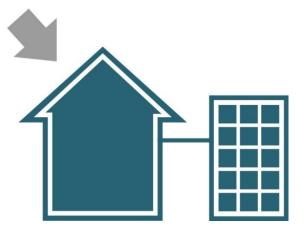
PV Systems and Storage for Off-Grid Solutions

Who we are, what we do

- International business association representing the decentralised energy sector working towards the integration of renewables into rural electrification markets in developing and emerging countries
- Enabling improved energy access through business development support for more than 80 members along the whole value chain for offgrid technologies by targeted advocacy and facilitating access to international and regional funding
- Global platform for sharing knowledge and best practices to provide for rapid implementation of available and advanced RE technologies and
 services

Click image to download publication

Members from industry, academia and public sector



Phaesun Company Profile

Solar components & sales

Solar systems & projects

Content

1. Technical overview: Batteries for Off-Grid systems

Comparison of technologies

2. Storage for specific Off-Grid applications

Off-Grid systems for households Off-Grid systems in the commercial sector Off-Grid systems for industrial use

3. Global Potential for Renewable Energy Storage Systems on Islands

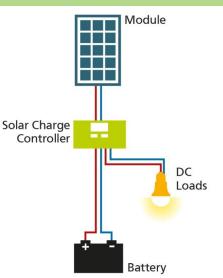
1. Technical overview

Comparison of battery technologies

VLRA	Gel	Nickel	Lithium
batteries	batteries	batteries	batteries

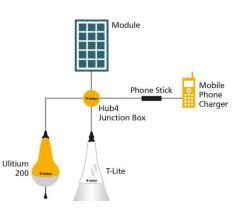
Comparison of battery technologies

		VLRA batteries		Gel batteries	Nickel batteries		Lithium batteries		
	units	Pb-Bloc	Pb OPzS	PB OPzV	NiCd	NiMH	NiFe	Li-Ion	LiFePO4
Energy density	Wh/kg	20~35	20~35	20~35	30~50	50~60	18~25	110~190	95~140
Operating life	years	5~6	7~8	12~15	5~15	< 5	>20	5~10	5~10
Cycle @ DOD80%	numbers	600	1500	2200	1500	1000	1500	3000	2500
Self discharge	%	5%	3%	3%	10~20%	20~30%	3%	3%	1%
Efficiency Wh	Wh _{in} /Wh _{out}	85%	85%	85%	75%	85%	90%	90%	95%
Temperature range		-10~40°C	-10~40°C	-10~40°C	-20~50°C	-20~50°C	-20~60°C	-20~55°C	-20~55°C
Captial cost	€	141	211	295	633		450	1.661	675
Energy cost	€/kWh	0,35	0,21	0,20	0,70		0,52	0,71	0,34
Safety		+	+	+	+	+	+	-	+
Environment		-	-	-		+	+	+	++


2. Storage for specific Off-Grid applications

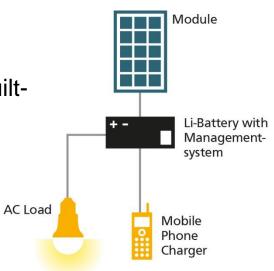
Rural households (1)

Conventional SHS:


- Individually designed
- Central VRLA-battery
- Use in Asia, Africa, Eurc
- 1980s~now

PicoPV:

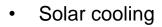
- Complete kits for lighting, mobile phone charging
- With Ni or Li battery
- Limited capacity
- Since 2008

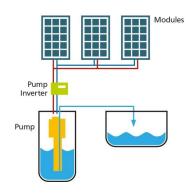


Rural households (2)

Energy Comfort Kits:

- Central Li-Battery with builtin management system
- Lighting and other individual loads
- Since 2013

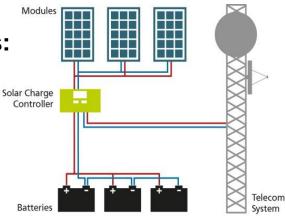

Commercial sector


Off-Grid systems for income generation without storage:

• Solar grain mill

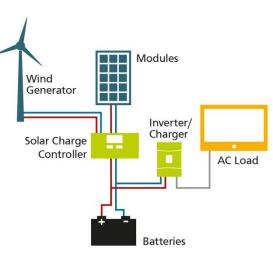
Grainmill Control-Unit

• Solar irrigation



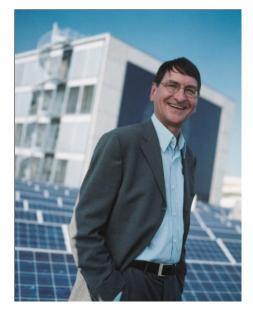
Industrial use

Telecommunication stations:


- Continous power need far from the grid
- With Ni or VLRA
- Often in combination with Diesel

Measuring stations:

- Extreme weather conditions
- Increasing use of Libatteries



3. Global Potential for Renewable Energy Storage Systems on Islands

Reiner Lemoine Institut

- Renewable Energy Mobility
 - Mobility concepts based on RE
- Renewable Energy Technology
 - Small wind power applications
 - Technical integration of RE
- Renewable Energy Systems
 - Optimization of energy systems
 - Energy transition processes
 - Off-grid energy systems

Reiner Lemoine Initiatior of the Reiner Lemoine-Foundation and Institute

Scientific research and support for a transition towards 100 % renewable energies

Small islands as market for RE storage systems

- Dependent on expensive diesel power generation
- High diesel fuel transportation costs
- Renewable resources abundant on most islands
- No major power generation infrastructure (< 100,000 inhabitants)

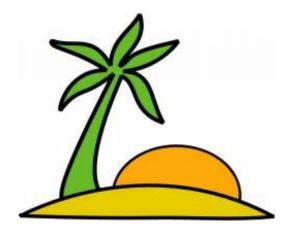
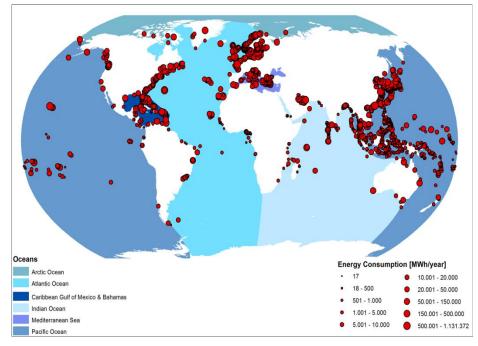


Table: Overview on global small island landscape (1,000 to 100,000 inhabitants).

Region	Number of Islands	Population (av.)	Population (sum)	GDP (av.) [EUR/cap]
Atlantic+ Arctic Ocean	416	9,985	4,150,000	18,200
Caribbean + Gulf of Mexico	105	16,160	1,700,000	14,600
Indian Ocean	232	12,210	2,830,000	2,960
Mediterranean Sea	104	10,540	1,100,000	23,500
Pacific Ocean	1,199	9,690	11,620,000	8,660
Total	2,056	10,410	21,400,000	14,300



Energy consumption on small islands

Table: Overview on global small island landscape (1,000 to 100,000 inhabitants).

Region	El. cons. (sum) [GWh/year]	El. cons. (av.) [MWh/year]	El. cons. (av. per cap.) [kWh/year* cap]	LCOE Diesel only (av.) [EURct/kWh]	
Atlantic+ Arctic Ocean	18,270	43,930	4,400	36.6	
Caribbean + G. o. Mex.	5,730	54,550	3,370	34.2	
Indian Ocean	2,240	9,670	790	38.0	
Mediterranea n Sea	3,680	35,390	3,345	33.2	
Pacific Ocean	22,770	18,990	1,960	39.3	
Total	52,690	25,630	2,462	38.0	

 Energy consumption per island is derived from national energy consumption level scaled by the local GDP **Figure:** Energy consumption of small islands (1,000 to 100,000 inhabitants). Energy consumption [MWh/year]

 Load profile per island is influenced by climate conditions and a national tourism factor

Energy Systems Modelling

- For given input parameters a cost optimized energy system configuration (out of diesel generator, PV module, wind power generator & battery) is computed in hourly time steps over one reference year
- Local input parameters are diesel costs, solar and wind resources, and load profiles
- Energy flows of components and resulting costs form the baseline for calculating power generation costs

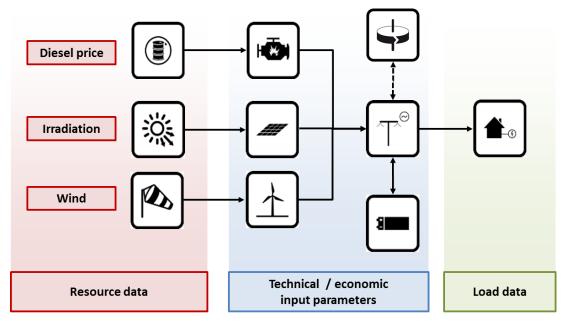
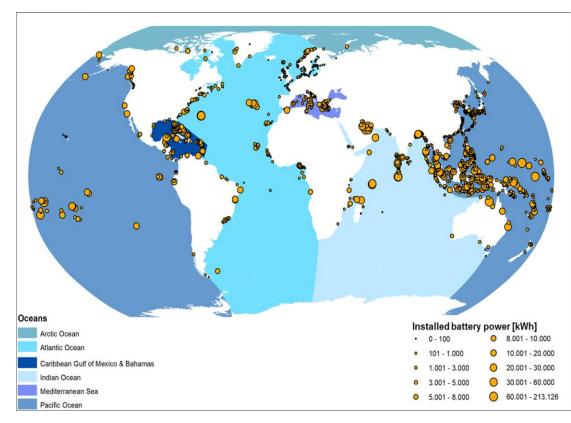


Figure: Simulation design and input parameter of a hybrid mini-grid.

Comparison of RE potential w/o storage

• Scenario I is without battery storage, Scenario II is with battery storage (lead acid), results for Scenario II are in relation to Scenario I in percent.


Region	Scenario	PV (sum) [MWp]		Storage (sum) [MWh]	LCOE (av.) [EURct/kWh]	RE share (av.)
Atlantic+ Arctic	Scen I	930	5,320	n/a	26.3	48.0%
Ocean	Scen II	+21%	-1%	930	-1.7%	58.2%
Caribbean + G. o.	Scen I	550	770	n/a	25.8	47.0%
Mex.	Scen II	+10%	-1%	230	-1.1%	55.0%
Indian Ocean	Scen I	910	1,210	n/a	24.4	53.9%
Indian Ocean	Scen II	+9%	-2%	360	-2.1%	64.9%
Mediterranean	Scen I	420	370	n/a	29.7	44.0%
Sea	Scen II	+74%	-30%	1,240	-6.7%	79.9%
Pacific Ocean	Scen I	3,390	5,090	n/a	30.2	43.8%
	Scen II	+19%	-5%	2,550	-7.1%	70.9%
Total	Scen I	6,200	12,760	n/a	30.2	45.8%
	Scen II	+21%	-4%	5,310	-6%	70.9%

- The studied islands posses over a very high potential for RE technologies (6 GWp PV & 12 GW wind)
- The introduction of RE technologies leads to LCOE cost reductions even without impelmenting storage technologies

Potential for storage technologies on islands

Figure: Installed battery power of small islands (1,000 to 100,000 inhabitants) for optimized hybrid systems. Installed battery power [kWh].

- With storage technologies
 LCOEs can be further reduced
 by 6%
- By introducing storage technologies average RE shares rise from 46 % to 70%
- Potential for wind power
 decreases in favor of PV power
 by introducing storage
 solutions
- Paper available at Science Direct:

<u>Blechinger et al. (2014): Assessment of</u> <u>the Global Potential for Renewable Energy</u> <u>Storage Systems on Small Islands</u>

Alliance for Rural Electrification

Rue d'Arlon 69-71 1040 Brussels, Belgium are@ruralelec.org www.ruralelec.org

Click here to download the ARE Application Form

Click here to subscribe to the <u>ARE newsletter</u> and receive the latest news on upcoming activities

