The business case of PV-hybrid Mini-grids: actors, contracts, drivers for profitability

Joscha Rosenbusch,
International Cooperation Officer
Bundesverband Solarwirtschaft e.V. (BSW-Solar)
The German Solar Industry Association

TASK To represent the German solar industry in the solar thermal and photovoltaic sector

VISION A global sustainable energy supply provided by solar (renewable) energy

ACTIVITIES Lobbying, political advice, public relations, market observation, standardization

EXPERIENCE Active in the solar energy sector for over 30 years

MEMBERS More than 850 solar producers, suppliers, wholesalers, installers and other companies active in the solar business

HEADQUARTERS Berlin

© BSW-Solar
New business models for PV: Investor guideline for international markets

BSW-Solar in cooperation with Intersolar Europe

- Overview of business models in international PV markets
- Information on market potentials, project structures, cash flow models, stakeholders,
- Practical guideline to develop markets with Power Purchase Agreements, net-metering, self-consumption, mini-grids, etc.
- Description of barriers and success factors for the different business models
- Or at BSW-Solar booth in hall B1.580 at special Intersolar Europe discount!
PV- hybrid Mini-grid

Technical Characteristics

• distributed grid-integrated or off-grid energy system consisting
• distributed generation with PV and other sources
• multiple energy loads of different customers
• may include energy storage technology
• usually based on a monitoring and control system which manages generation, distribution, consumption and storage
• if grid connected, a parallel or “islanded” mode of operation is usually selectable
The case of PV-hybrid Mini-grid

Brownfield: Hybridisation of existing Mini-grids

Microgrid Capacity by Market Segment, World Markets: Q4 2012 (Source: Pike Research)

- Remote Systems: 691 MW (22%)
- Commercial/Industrial: 327 MW (10%)
- Community/Utility: 669 MW (21%)
- Military: 578 MW (18%)
- Institutional/Campus: 915 MW (29%)

Electricity Cost ($/kWh)

Today

Time
The case of PV-hybrid Mini-grid

Greenfield: New PV Hybrid Mini-grids

Source: Electricity Access Database (IEA)
The case of PV-hybrid Mini-grid

Customer segmentation by different value propositions

Source: Lilienthal HOMER Energy
The case of PV-hybrid Mini-grid
Private sector investment

Delivery models for PV-hybrid Mini-grids in remote areas in developing countries – selection

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Public</td>
<td>BOO by public entity (government / state utility / agency)</td>
</tr>
<tr>
<td>Community based / cooperative model</td>
<td>BOO by community / cooperative / municipal utility</td>
</tr>
<tr>
<td>PPP Model 1</td>
<td>Public entity builds and owns, Private sector: operation under concession or management fee</td>
</tr>
<tr>
<td>PPP Model 2</td>
<td>Private sector builds and owns generation asset and sells power (eg. PPA) Public entity operates distribution element</td>
</tr>
<tr>
<td>Fully Private</td>
<td>BOO of generation and distribution asset of mini-grid by private sector under concession. Sells power</td>
</tr>
</tbody>
</table>
PV-hybrid Mini-grid
Possible business models for private sector

Construction
- EPC

Generation
- Technology Performance, Generation asset maintenance
 - Integrated (Micro-utility) ESCO
 - Generator + Daily Plant Operations and Management

Distribution
- Demand Engagement and Revenue Collection
 - Micro-utility (Distributor)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Typical Capacity</th>
<th>Expected Equity IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated (micro-utility) ESCO</td>
<td>Generation, Transmission, Distribution Sites are owned and managed by the ESCO</td>
<td>15 ~ 40 KW</td>
<td>Low to medium</td>
</tr>
<tr>
<td>Asset Light ESCO</td>
<td>Variant: the asset is not owned by the operating ESCO itself but a third party owner (TPO). ESCO operates the asset and pays a monthly fee.</td>
<td>15 ~ 40 KW</td>
<td>high</td>
</tr>
<tr>
<td>GENCO</td>
<td>Focussed on primarily generation</td>
<td>15 ~ 50 KW; or fewer plants of 100~ 200 KW</td>
<td>medium</td>
</tr>
<tr>
<td>Micro-Utility Distributor</td>
<td>Invests in the mini-grid (distribution systems) and focuses on shaping demand in the area of operation</td>
<td>Variable</td>
<td>Not viable without subsidies</td>
</tr>
</tbody>
</table>

Source: cKinetics
PV-hybrid Mini-grid
Private sector investment

Framework conditions

Requirements to be met for private sector investments in fully integrated ESCO (generation and transmission)

1. It must be legal to operate an micro-utility ESCOs; micro-utility ESCOS should be able to obtained licenses easily.

2. Micro-utility ESCOs must be allowed to charge tariffs resulting in risk equivalent margins.

PV-hybrid Mini-grid
Business environment

PV-Hybrid Mini-grid Stakeholders

- EPC
- Load & Supply Mgmt
- Operator
- Generation assets
- PV other Storage

Stakeholders:
- Bank
- Equity Investors
- Target Returns
- Micro-Finance Institution
- Power Consumer(s)
- Power

Cashflow
Powerflow
Contracts

Service Contract
Service Fee Opex

PPA contract
Power Supply
Power Price

Subsidies

Optional

Regulatory Authority

Electrification Authority

Donor Organisation

Optional

© BSW-Solar
PV-hybrid Micro Utility Customers

ABC Model

The A(nchor) – B(usiness) – C(ommunity) Model

Anchor + Business + Community
- Households have access to affordable energy

Anchor + Business
- Local businesses use power to increase operating hours

Anchor
- Large, reliable credit-worthy customer

Households: low electricity demand, mostly for lighting, mobile-phone charging and household appliances

Businesses: higher electricity demand for productive use

Anchor customer: financially sound, guarantees electricity purchase, secures commercial operation

Potential anchor customers
- Telecommunication towers
- Mining companies
- Agro-processing industry
- Tourism industry
- ...

Source: GIZ
PV-hybrid Mini-grid
Project development steps

Framework conditions

Identification Planning Financing / Procurement Implementation Construction Operation

Technical Planning

• Loads and generation capacity: Daily and over lifetime

• PV and other RE & dispatchable resources stability of the system

• Control System

Matching Supply and Demand

Project take-off
PV-hybrid Mini-grid
Project development steps

Framework conditions

Identification ➔ Planning ➔ Financing / Procurement ➔ Implementation / Construction ➔ Operation

- Pricing and tariffs
- Costs
- Operation / Management Model
- Revenue Streams
- Involvement of local community
- Ownership & Governance
- Growth Strategy
PV-hybrid Mini-grid Project development steps

Framework conditions

Identification → Planning → Financing / Procurement → Implementation Construction → Operation

First sight factors of profitability

Costs → Pricing and tariffs → Operation / Management Model → Revenue Streams → Involvement of local community → Ownership & Governance → Growth Strategy
Operation- Management Modell

Costs (Magnitude and Structure)

Costs can be difficult to predict

Types of Costs

- Transaction Costs
- Management Costs
- Operation and Maintenance Costs
- Replacement Costs
- System Extension Costs
- CRM costs (training)
- Tariff collection costs
- Monitoring costs
- Fraud / Theft
- Investment and Financing Costs

Cost reduction methods

- Efficient appliances and lights
- Incentives for electricity usage during times of abundant renewable energy generation (tariff / DSM)
- Load management system / Commercial load scheduling
- Integration of quality management and lean enterprise approaches into the electricity metering and billing approach
- Reduction of travel and HR-costs by hiring and training local personnel
- Restrict residential use
PV-hybrid Mini-grid
Revenues (kWh sold)

Stabilization methods

• Foster productive and diversified use of electricity, e.g. by cooperating with Micro-Finance Institution
• Incentivize and motivate customers to plan their consumption ahead
• Appropriate metering concepts, balancing flexibility and
Operation- Management Modell
Tariffs and Pricing Models

Tariff model as the binding element
• make Mini-grid financially viable and sustainable
• willingness and ability of customers to pay
• accepted by regulatory authority
• support economic development and improve living standard in the villages
• enable understanding of mini-grid operation and demand side management

Stepped **pricing model** that differs by levels of availability factors

<table>
<thead>
<tr>
<th>Client</th>
<th>Price</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key / Platinum</td>
<td>Premium</td>
<td>Highest</td>
</tr>
<tr>
<td>Gold</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Silver</td>
<td>Lowest</td>
<td>Regular</td>
</tr>
</tbody>
</table>
Financing along the micro-utility development timeline

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
<th>YEAR 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of model</td>
<td>Select village</td>
<td>Political framework</td>
<td>Company foundation and financing</td>
<td>Model implementation and financing</td>
</tr>
</tbody>
</table>

- **Cashflow**
 - Business plan and development subsidy
 - PPP money or subsidies for pilot phase
 - PPP money or subsidies for scale-up

- **Breakeven point**
 - Equity from impact investors, loans from development banks, etc.

Source: IRENA adapted from INENSUS,
New business models for PV: Investor guideline for international markets

BSW-Solar in cooperation with Intersolar Europe

- Overview of business models in international PV markets
- Information on market potentials, project structures, cash flow models, stakeholders,
- Practical guideline to develop markets with Power Purchase Agreements, net-metering, self-consumption, mini-grids, etc.
- Description of barriers and success factors for the different business models
- Now available: www.solarwirtschaft.de/en/business-models-pv
- Or at BSW-Solar booth in hall B1.580 at special Intersolar Europe discount!
Thank you for your attention…

Joscha Rosenbusch
International Cooperation Officer
+49 30 29 777 88 38
rosenbusch@bsw-solar.de