Renewable Energy for Health System Resilience: Strategies for Planning & Implementation

13th May 2020

Talal Kanaan

1. Planning Overview: Scope & Strategy

2. System Assessment

- Assessment Planning
- Data Collection Tool
- Data Collection Framework

3. Implementation

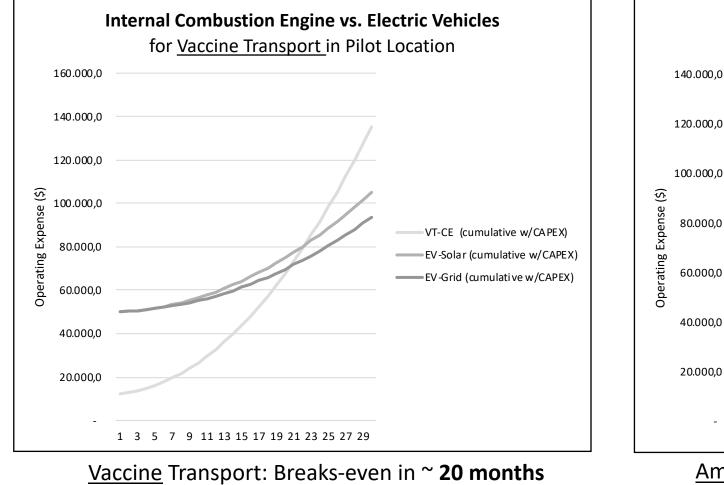
- Design & Engineering
- Procurement of Goods & Services
- Installation Planning
- Quality Control & Monitoring
- Sustainability + O&M

1. Planning Overview: Scope & Strategy

2. System Assessment

- Assessment Planning
- Data Collection Tool
- Data Collection Framework
- 3. Implementation
 - Design & Engineering
 - Procurement of Goods & Services
 - Installation Planning
 - Quality Control & Monitoring
 - Sustainability + O&M

Planning Overview: Health System & Energy?


- Health Clinics: Primary Health Care
- Cold Rooms & Warehouses for Vaccines: Cold Chain
- Hospitals: Secondary & Tertiary Health Care
- Critical Operational Facilities
 - Laboratories for Infectious Disease & Surveillance
 - \circ Blood Banks
- Mobility
 - $\circ~$ Vaccine Transport
 - Referral and Ambulance

Courtesy of WHO occupied Palestinian Territory (Nasser Medical Complex, Gaza Strip)

<u>Ambulance</u> Transport: Breaks-even in ~ **15 months** (ACE: Ambulance Combustion Engine)

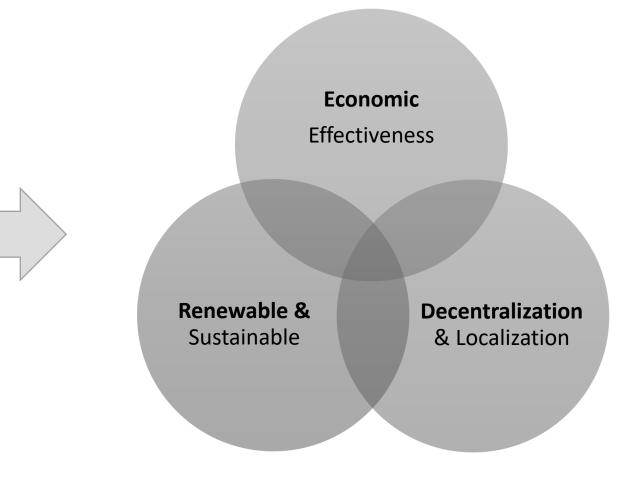
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

ACE (cumulative w/CAPEX)

EV-Solar (cumulative w/CAPEX)

EV-Grid (cumulative w/CAPEX)

Internal Combustion Engine vs. Electric Vehicles


for Ambulances in Pilot Location

(Courtesy of "Health Integrated Resilience System" Project-HIRS / UOSSM)

Health & Energy Resilience

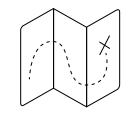
Health System Energy Problem:

- No Energy Access
- Diesel Generators (Fuel)
- Weak Unreliable Grid
- Risk of Grid Failure

Solution: Solar PV Electrification

Planning Overview: Types of Applications

Off-grid PV systems (PV + Energy Storage) – 2 sources


- AC System
- DC System

Hybrid PV-Diesel system with Energy Storage back-up – 3 sources

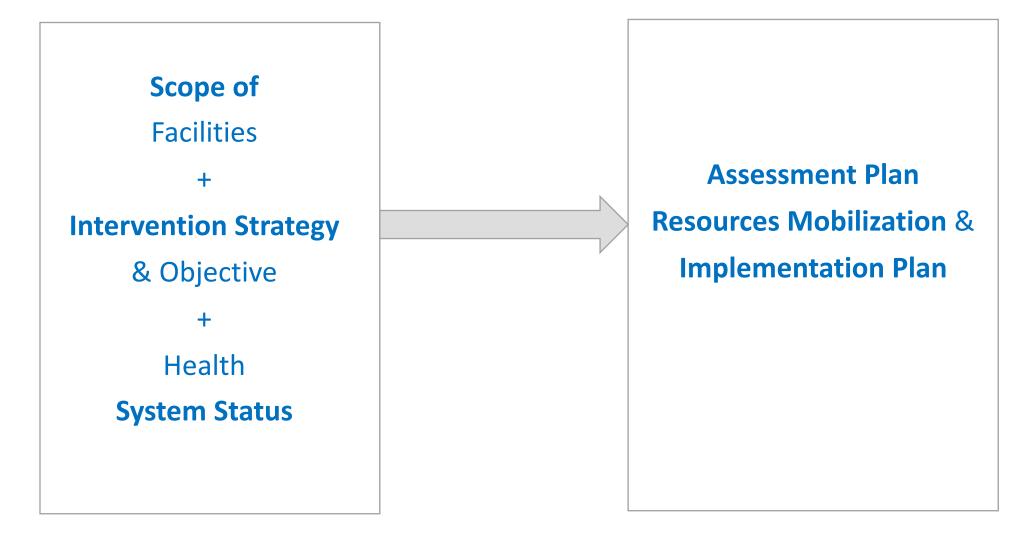
- Normal Energy Storage
- Lean Energy Storage

Hybrid PV-Diesel-Grid System with & w/o ESS – 4 sources

Planning Overview: Scope & Strategy

What is the scope of the plan?

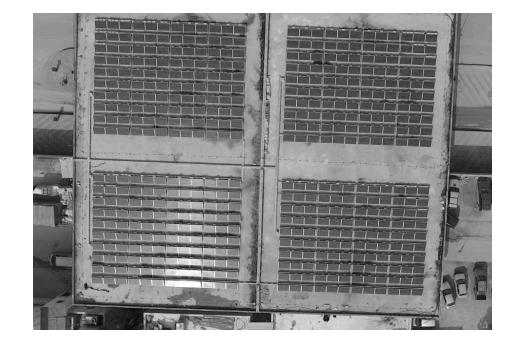
- Single critical facility?
- Specific group of facilities (critical hospitals, cold chain system, clinics, etc)?
- $\,\circ\,$ Integrated Health System Approach for a Country/Region?


What is the <u>conditions</u> of country/region of intervention?

- $\,\circ\,$ Status of Electricity and Primary Sources locally?
- \circ Fuel dependency?
- o No Energy Access?

What ensures the system's energy resilience, and what is the priority?

- $\,\circ\,$ Full Electrification
- $_{\odot}$ Critical Department for Emergencies
- \circ Cold Chain Only?


Planning Overview: Scope & Strategy

1. Planning Overview: Scope & Strategy

2. System Assessment

- Assessment Planning
- Data Collection Tool
- Data Collection Framework
- 3. Implementation
 - Design & Engineering
 - Procurement of Goods & Services
 - Installation Planning
 - Quality Control & Monitoring
 - Sustainability + O&M

(General Hospital, North Syria – Courtesy of UOSSM – Syria Solar)

Assessment: Assessment Phases

1. Planning of Assessment

- Identifying Approach & Scope
- Developing the Data Collection Tool (Questionnaire)
- Planning the Data Analysis Framework

2. Performing Field Data Collection

- Collecting data from sites
- Organizing and cleaning data set

3. Data Analysis and Synthesis

• In accordance with Data Analysis Framework

Data Collection Tool Example (OPEN SOURCE): https://www.kobotoolbox.org/

(or other internally developed tools for UN agencies or NGOs)

Assessment: Data Collection Tool

A. General Information

PRIMARY HEALTH CARE (PHC)

- **B.** Health Services (services, impact, beneficiaries)
- C. Assessment of Space Availability & Conditions (Roof, Elec. room)
- **D.** Quantification of Energy Needs
- E. Assessment of Energy Infrastructure

Assessment: Data Collection Tool

A. General Information

- Location and Governorate
- Facility Code
- General information
- Facility Management

B. Health Services

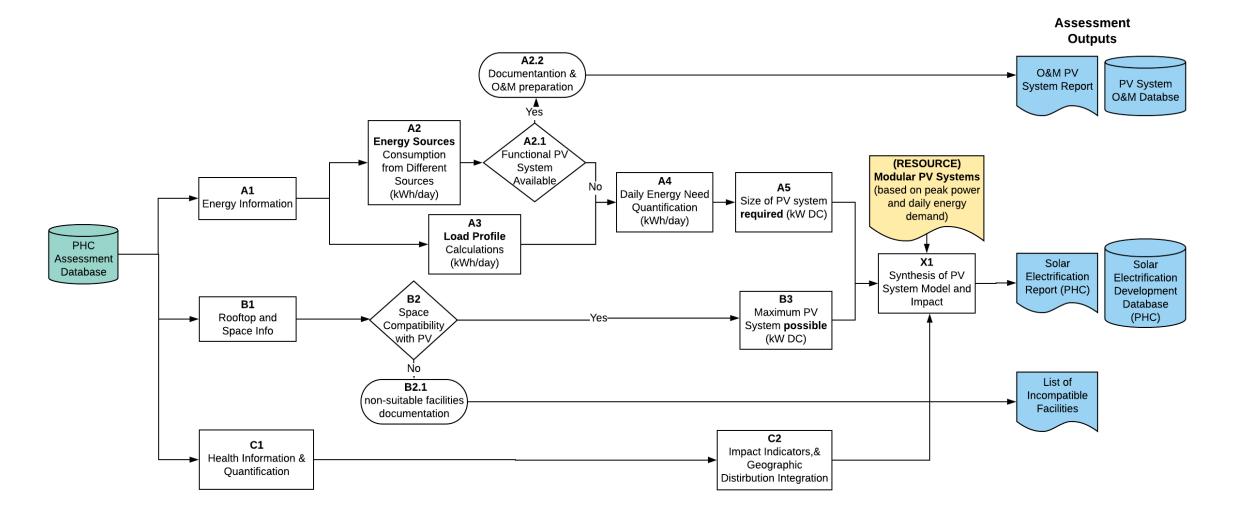
- *Health Services:* Types and quantity of services and departments
- Type and category of health facility (For Example Center Classification: 1,2,3)
- Impact & beneficiary quantification
- Categorization for Impact and Geographical Distribution

Assessment: Data Collection Tool

C. Spaces

- Availability of Roof Space & Ground Space
- Battery and Inverter Room (Electrical)

D. Quantification of Energy Needs


- Energy quantification based on Load Profile (Hospitals Requires Data Loggers)
- Energy quantification based on the <u>source</u> (Diesel, Grid, Others)
- Possible modularization of energy demand based on service/clinic

E. Electricity Infrastructure

- Status of grid availability in the area
- Possible extension to target region

PHC EXAMPLE

Assessment: Data Analysis Framework

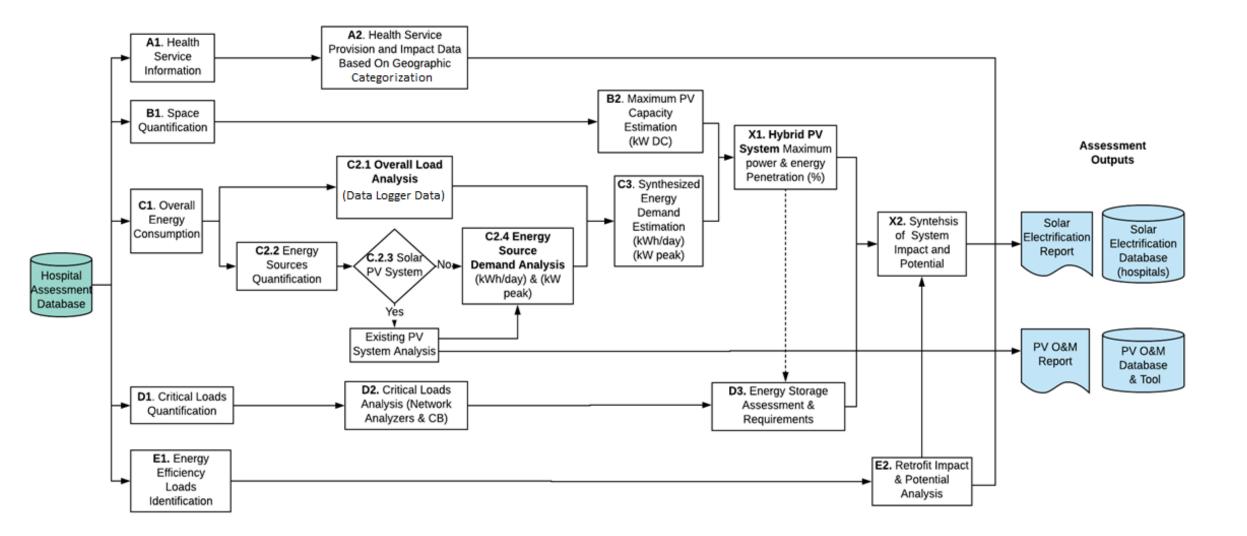
Modular Size of PV systems (Example)

Modular PV Systems based on existing & potential energy demand:

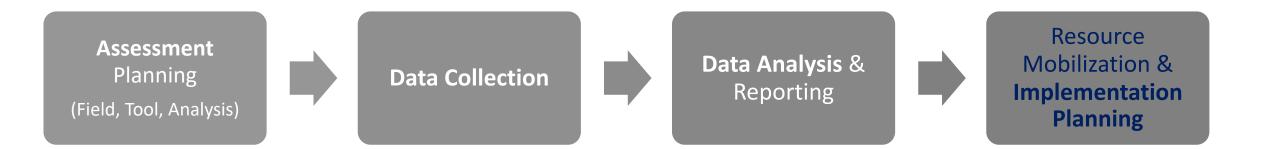
- System A | 5 kWp
- System B | **7.5** kWp
- System C | **10** kWp
- System D | **12.5** kWp
- System E | **15** kWp
- System F | **20** kWp

Example of **10** kWp PHC

Example of 20 kWp PHC


(Courtesy of UNICEF – MENARO)

Primary Health Care Center | 5 kWp (Example Load Table)


PHC Center TYPE A 1 5 kWp							
Load Name	Category	Department	Quantity	Load (W)	Total Load (W)	Hours	kWh /day
Fan - 56 Inch	General Services	All	4	30	120	7	0.84
LED Light	General Services	All	5	40	200	7	1.4
Microscope	Medical Equipment	Laboratory	1	100	100	7	0.7
Electric Centrifuge	Medical Equipment	Laboratory	1	230	230	7	1.61
Colorimeter	Medical Equipment	Laboratory	1	60	60	7	0.42
AutoClave	Medical Equipment	Clinic	1	1800	1800	2	3.6
Nebulizer	Medical Equipment	Clinic	1	50	50	7	0.35
Vaccine Fridge (Iceline)	Medical Equipment	Vaccine	1	300	300	11	3.3
Vaccine Freezer (Iceline)	Medical Equipment	Vaccine	1	300	300	11	3.3
Charging - Telephone	IT- Admin	Extra	2	60	120	5	0.6
Laptop	IT- Admin	Extra	1	100	100	12	1.2
LED - Lamps	IT- Admin	Extra	3	35	105	8	0.84
Water Pump	IT- Admin	General	1	1000	1000	2	2
						Total	20.16

HOSPTIALS EXAMPLE

Assessment: Data Analysis Framework

Assessment: Summary

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework
- 3. Implementation
 - Design & Engineering
 - Procurement of Goods & Services
 - Installation Planning
 - Quality Control & Monitoring
 - Sustainability + O&M

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework
- 3. Implementation
 - Design & Engineering
 - Procurement of Goods & Services
 - Installation Planning
 - Quality Control & Monitoring
 - Sustainability + O&M

Implementation: Design & Engineering

- Internal Engineering Unit/Personnel (In-House)
- Engineering Firm: Through competitive tender (Local or International)
- External Engineering Entity (Technical NGOs, Public Entity, University)

How to decide?

- Your Organizational Capacity
- Local Technical Staff Experience
- Existing Human Resources
- Scale of Project

Functions?

- Validation & Update of Main DB
- Engineering Study (CAD Layouts, etc)
- Bill-of-Quantities and Specification

Implementation: Design & Engineering

- 1. Trained engineering personnel to be engaged as early as possible
- 2. Upon resource allocation for the project: validation of site conditions, data, and sizing is necessary before installation planning. Especially if long gap between assessment & mobilization.
- 3. Must take into consideration international markets, advanced technical solutions (new modules technologies, and storage tech like Lithium), and design/installation standards.
- 4. Prioritize Energy Efficiency measures **before** solar PV electrification.
- 5. Critical Loads Segmentation & Integration with existing networks.

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework

3. Implementation

- Design & Engineering
- Procurement of Goods & Services
- Installation Planning
- Quality Control & Monitoring
- Sustainability + O&M

Implementation: Procurement of Goods & Services

Modalities?

- **A. Turn-Key:** Supplier provides materials + installation services. Engineering personnel (internal/external) to develop spec and supervise procurement.
- B. Segmented: Informed by qualified personnel, organization procures materials according to spec and BOQ from regional or international markets & engages tender for local installation. Options:
 - Open International/Regional Tenders
 - Long Term Agreements (LTAs)

How to decide?

- Local and regional market access and competitiveness
- Internal capacity of the organization

Implementation: Procurement of Goods & Services

- 1. Qualified engineering personnel to lead procurement (RFPs, spec, etc)
- 2. Evaluate procurement options and modalities considering economic viability, product range, and accessibility.
- Consider market accessible viable solutions (lithium ESS), and evaluate competitiveness according to life-time cost, and not only initial cost (levelized cost of kWh – LCOE).
- 4. Consider restrictions **due to remoteness** of target region/location, and integrate mitigation within your procurement strategy.
- 5. Assess existing implemented solutions locally and extrapolate challenges and lessons learned if any.

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework

3. Implementation

- Design & Engineering
- Procurement of Goods & Services
- Installation Planning
- Quality Control & Monitoring
- Sustainability + O&M

Implementation: Installation Planning

- 1. Engineering personnel must consider **geographic** and **environmental consideration** in the target region (*variations exists in one country*).
- 2. Installation planning must streamline field implementation: including creation of layouts (civil, electrical, mechanical/mounting).
- 3. Consider **grouping** and **clustering facilities** into lots, based on the local market of contractor or project management modality selected.
- 4. Ensure that *design and installation* best-practices and standards are integrated into the installation planning process considering international <u>and</u> local codes.

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework

3. Implementation

- Design & Engineering
- Procurement of Goods & Services
- Installation Planning
- Quality Control & Monitoring
- Sustainability + O&M

Implementation: Quality Control & Monitoring

- 1. Qualified Engineering Team that conducted Installation Planning should lead the quality control, supervision and monitoring
- 2. Advisable to engage technical personnel from the local authorities (Ministries or Directorates of Health, Electricity if relevant)
- 3. Formulate Supervisory Committee to ensure follow up.
- 4. Quality Control standards shall be in accordance with norms for Installation, Testing, and Commissioning.

- 1. Planning Overview: Scope & Strategy
- 2. System Assessment
 - Assessment Planning
 - Data Collection Tool
 - Data Collection Framework

3. Implementation

- Design & Engineering
- Procurement of Goods & Services
- Installation Planning
- Quality Control & Monitoring
- Sustainability + O&M



Implementation: Sustainability + O&M

	Option A	Option B
Service Lead	Private Service Provider:1. Installation company2. Independent O&M company	Local Authorities (Ministry of Health – Province/State Level)
Description	O&M functions would be performed by the company according to an agreed upon TOR and accountable to the Organization or the health authorities.	The local authorities would be responsible for the O&M functions and would manage the direct activities required.
Pros (+)	Quality Management of the service would more robust due to contractual obligation to meet specified standards.	Contributes to building the internal capacity of the public authority enables.
Cons (-)	Sustainability would be problematic if financial resources are not available. Dependency on external funding.	When weak public administration structure, can cause issues, vandalism, lack of adequate follow up.

Implementation: Sustainability + O&M

- 1. Plan to integrate O&M function **early** in the process
- 2. Engage all relevant **stakeholders** (Health Authorities, Staff Management, Installation Service Providers)
- 3. Ensure modality of O&M monitoring is in place
- 4. Consider **financial resource availability for** O&M future costs
- 5. Consider **battery replacement** costs in the initial planning process

Summary of What to Keep in Mind

Summary: <u>7 tips</u> for Practitioners

- 1. Plan well for a comprehensive assessment & prioritize needs.
- 2. Engage qualified engineering personnel as early as possible.
- Determine the <u>best long-term value</u> for procurement internationally based on market price, advanced solutions (lithium), and longevity.
- 4. Include technical authorities personnel early in planning (if relevant).
- 5. Consider **options for implementation for different phases** based on local conditions, experience, and best-practices.
- 6. Pursue standards in all phases, and build on previous experience locally.
- 7. Plan well in advance for O&M (funding, personnel, management)

Thank you

talal.a.kanaan@gmail.com