Solar Powered Water Systems in Humanitarian Context – Types and Configurations

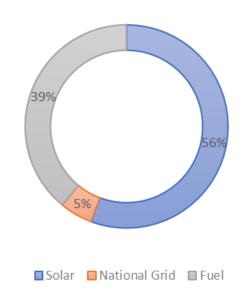
Wednesday, 25 Nov at 11:00 am CET

David Githiri: Technical Coordinator

SCOPE

of water schemes:174

of Solar/Solar Hybrids: 164

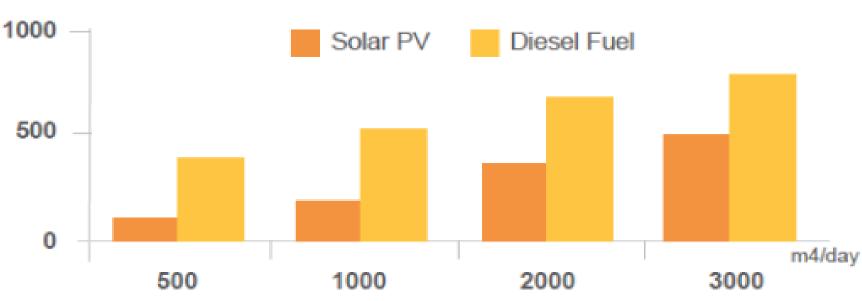

of Grid/Fuel: 5

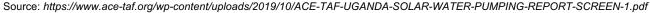
of Fuel:5

Daily Average Production September

2020: 13,939 m3

Power Source for Water Pumping in Refugee Settlements in Uganda

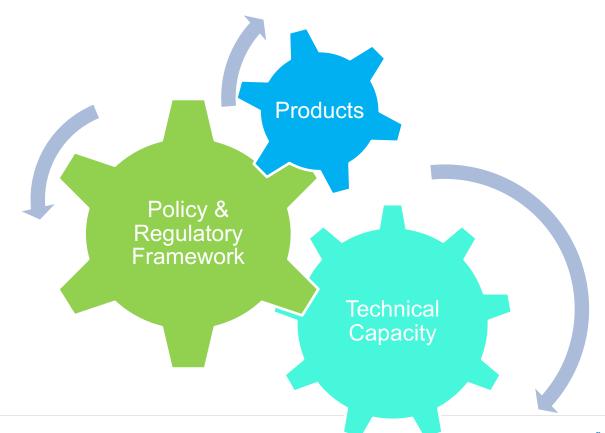



Key drivers to wider adoption

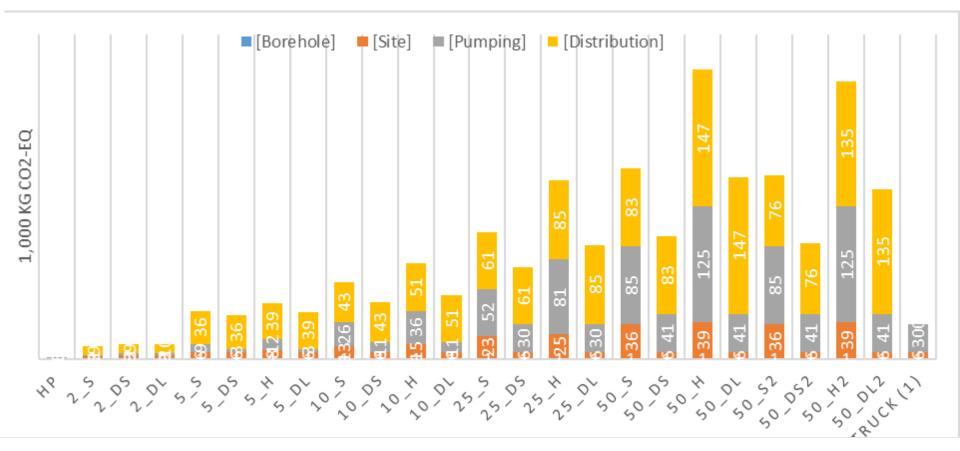
- Cost Analysis LCCA
- Solar Pumping Market Place
- Environmental Considerations

Cost comparison between solar PV and diesel pumps

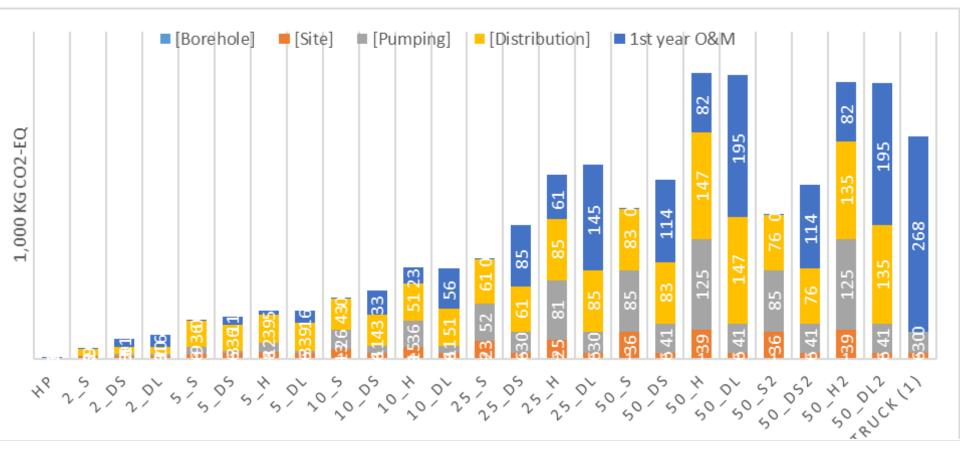
Lifetime Cost of Pump, by Size \$ Thousands



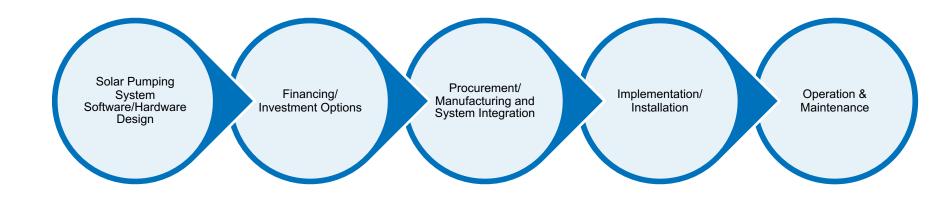
Column1	1		2			3		4		5		6		7		8		9	
System Design Scenario		Gen Only (9,5h) (10k people)		Solar Only (10k people)	Sc	olar-Gen (0h) Standby (10k people)	So	olar-Gen (4h) Hybrid (10k people)		Solar Only (33k people)	Sol	ar-Gen (0h) Standby (33k people)	Si	olar-Gen (4h) Hybrid (47k people)	So	lar-Gen (13h) Hybrid (80k people)		Gen Only (23h) (80k people)	
CapEx	\$	186.000	\$	224.000	\$	261.000	\$	234.000	\$	615.000	\$	669.000	\$	812.000	\$	1.061.000	\$	828.000	
O&M 1st Year	\$	31.803	\$	5.000	\$	7.741	\$	14.234	\$	10.000	\$	15.059	\$	35.623	\$	95.024	\$	156.581	
Total Initial	\$	217.803	\$	229.000	\$	268.741	\$	248.234	\$	625.000	\$	684.059	\$	847.623	\$	1.156.024	\$	984.581	
Total after 10 Years	\$	567.828	\$	284.031	\$	353.934	\$	404.889	\$	735.061	\$	849.805	\$	1.239.690	\$	2.201.866	\$	2.707.923	
People		10.000 People		10.000 People		10.000 People		10.000 People		33.000 People		33.000 People		47.000 People		80.000 People		80.000 People	
\$\$/People Initial		22 \$\$/P		23 \$\$/P		27 \$\$/P		25 \$\$/P		19 \$\$/P		21 \$\$/P		18 \$\$/P		14 \$\$/P		12 \$\$/P	
\$\$/People/Year		6 \$\$/P/Year		3 \$\$/P/Year		4 \$\$/P/Year		4 \$\$/P/Year	2	2,2 \$\$/P/Year	2	,6 \$\$/P/Year	2	2,6 \$\$/P/Year	2	,8 \$\$/P/Year		3,4 \$\$/P/Year	
Cubic Meter / Day		150 m3/Day		150 m3/Day		150 m3/Day		150 m3/Day		495 m3/Day		495 m3/Day		705 m3/Day		1.200 m3/Day		1.200 m3/Day	
Cubic Meter in 10 Years		547.500 m3		547.500 m3		547.500 m3		547.500 m3		1.806.750 m3		1.806.750 m3		2.573.250 m3		4.380.000 m3		4.380.000 m3	
\$\$ / Cubic Meter		1,04 \$\$/m3		0,52 \$\$/m3		0,65 \$\$/m3		0,74 \$\$/m3		0,41 \$\$/m3		0,47 \$\$/m3		0,48 \$\$/m3		0,50 \$\$/m3		0,62 \$\$/m3	
UGX / Cubic Meter	3.	837 UGX/m3	1	.919 UGX/m3	2	2.392 UGX/m3	2	.736 UGX/m3	1	.505 UGX/m3	1.	740 UGX/m3	1	.783 UGX/m3	1	.860 UGX/m3	2	.288 UGX/m3	
UGX / 20 Liter		77 UGX/20L		38 UGX/20L		48 UGX/20L		55 UGX/20L		30 UGX/20L		35 UGX/20L		36 UGX/20L		37 UGX/20L		46 UGX/20L	
O&M Percentage		67%		21%		26%		42%		16%		21%		34%		52%		69%	



Solar Pumping Market Place



Environmental Consideration



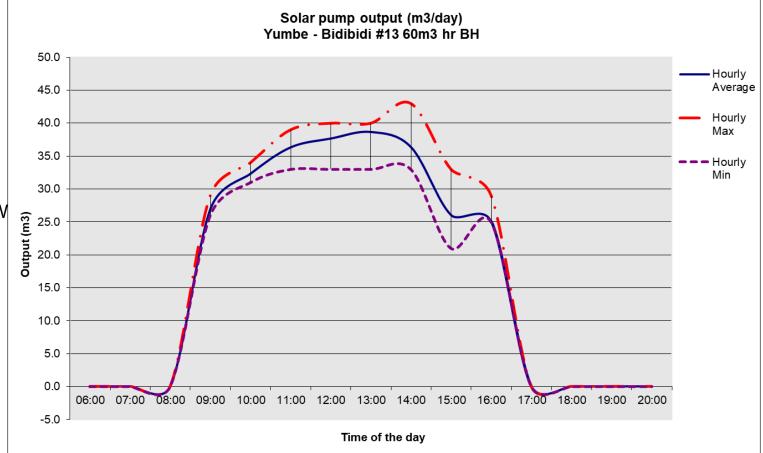
Environmental Consideration

Solar Powered Scheme Value Chain in Humanitarian Setting

Performance

BH: 60m3/hr

Pump installed:


40m3/hr

Solar Array: 41.8 KW

Max Output: 266

m3/day

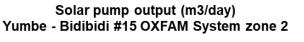
Avg Output: 259m3/day

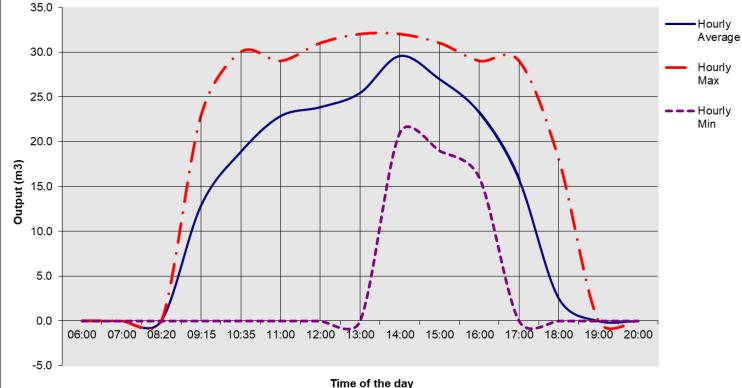
Performance

BH: 45m3/hr

Pump installed:

30m3/hr


Solar Array: 30KW


Max Output: 284

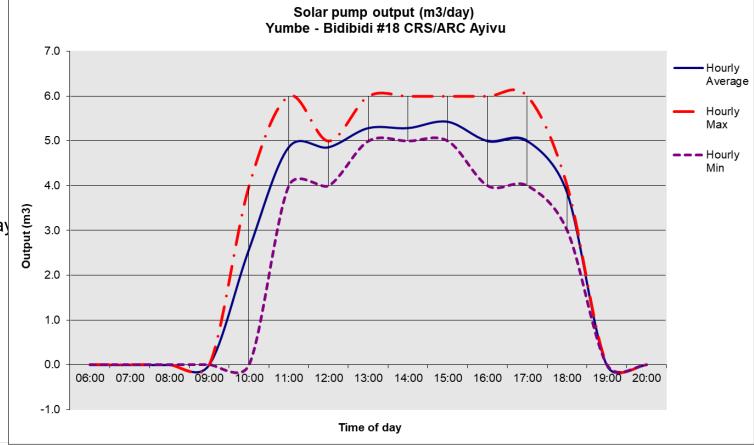
m3/day

Avg Output: 202

m3/day

Performance

Pump installed:


6.05m3/hr

Solar Array: 17.9KW

Max Output: 49m3/day

Min Output: 42.1

m3/day

Opportunities for Growth

Risk	Mitigation						
Solar irradiation during the rainy seasons	Complement with rainwater harvesting and HH water treatment						
Low technical Capacity to monitor performance effectively	Remote monitoring/IoT technologies						
Over design/under-design: Inadequate data for optimized design	Agility and Optimization of systems based on analytics: Data collected						
Long Investment Payback Periods: Economics in rural areas	System Integration: drinking water pumping + Irrigation pumping+ Lighting+ Charging electronics+++ (leverage on CAPEX costs)						

Discussion Points

Is it more efficient to have 2 smaller pumps rather thank one big pump (irradiation vs Output)

Is 1:1 configuration of pumps and solar array more efficient than a higher wattage to capacity of pump in terms of Output per day?

Join the conversation

