Energizing rural India using micro grids: The case of solar DC micro-grids in Uttar Pradesh State, India

Debajit Palit & Sangeeta Malhotra

The Energy & Resources Institute, New Delhi

Electricity Situation in India

- India is one of the fastest growing economies;
- While 96% of the villages are electrified, around 300million people still without access;
 - 93% of total urban households are electrified
 - 67 % of total rural households have access
- In 2001, Government of India declared the objective of 'Power for All by 2012'; Now pushed to 2022
- Many of the households in grid connected villages do not take electricity connection
- Large number of hamlets continue to remain unelectrified
- Chronic shortage of electricity supply

The New Concept

- Discoms find grid extension economically unattractive to remote rural areas
- Discoms have also not attempted to electrify these areas with offgrid renewable energy systems
- MNRE/SREDA has attempted to address the vacuum to a large extent
- In addition, NGOs and entrepreneurs have implemented number of solar projects
- ➤ While implementation of AC mini-grids started since early Nineties, Solar DC micro grids seems to be the new concept finding favour to provide affordable electricity for basic services

Solar DC Micro-grids in India

- ➤ 1st solar DC micro-grid (5 kWp) was reportedly commissioned almost 30 years back in a small village in Uttar Pradesh
- In 2010, Mera Gaon Power (MGP) piloted the DC micro-grid technology in the village Swuansi Khera in Kanpur to provide LED based lighting
- MGP has set up DC micro-grid in 900 villages covering around 20,000 households
- In 2010, another pilot project was initiated by TERI which served around 10 households in Jagdishpur district, UP through DC micro-grid
 - TERI further set up 30 DC micro-grids in the six districts across UP connecting around 1400 households and shops;
 - Further expanded under Lighting a Billion Lives campaign connecting around 11000 households in 243 villages spread across 6 states
- UPNEDA developed a 1.2 kW DC micro-grid plant in the year 2011-12 in Mathia village in Gonda district to serve upto 200 households.
 - UPNEDA further expanded to set up 23 solar micro-grids in 11 districts (2011-12), covering around 4,000 families

Methodology

- > Objective: Analyse the nuances of solar DC micro-grids in India, with a focus on Uttar Pradesh
 - > Technical features, Service delivery, Financing, Tariffs, O&M, Impacts
- > Area of Study: Districts where the DC micro-grids are in operation for more than one year
- > Sample size: ~250 Households (Out of 2217 DC grid

connections)

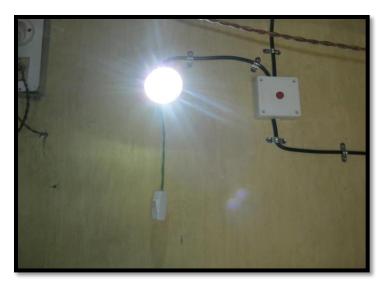
➤ The households were randomly selected from 2-3 villages/hamlets of these districts

Primary Data collection through questionnaires

Type of Agency	District	Villages	Households
	name		surveyed
NGO - TERI	Azamgarh	2	40
	Amethi	2	50
Government -	Siddharth	3	38
UPNEDA	anagar		
	Hardoi	2	17
	Basti	2	15
Private - MGP	Sitapur	2	40
& Minda	Unaao	3	50

Technical features

MODEL	PLANT CAPACITY	HOURS OF SUPPLY	CONNECTIONS PROVIDED
UPNEDA	1.2kWp Supply voltage-24V	4-5	2 LEDs(2W & 1W, ~100 lumens), mobile charging point; Prepaid meter & timer
TERI	Different capacities Supply voltage-24V Different grid length	4-5	1-3 LED (3-6W, ~100 lumens), mobile charging point
MERA GAO POWER	240 Wp Supply voltage-24V Shorter grid length	5-7	2 LEDs (1W each, ~75 lumens), mobile charging point
MINDA	240 Wp Supply voltage-24V	4-5	2 LEDs (1.5W each, ~100 lumens)



Glimpses

Service delivery

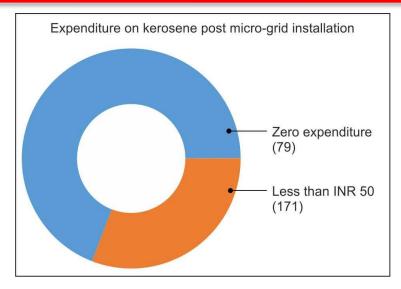
	UPNEDA	TERI	MERA GAO POWER	MINDA
•	Built, Operated and Maintained by UPNEDA	 TERI motivates local youth to become Energy Entrepreneurs 	 Design, installation, operation, maintenance – A micro utility 	Minda installed the systemHands it over to
	Technology providers install the system	(EE) to invest s in micro-grids • Assists in	approachCollect connection fee and prepaid	rural entrepreneurs after training them
•	Local operators are paid salaries to operate the system	procurement and installation of system	weekly tariffsForm JLG's to ensure regularity in	 Operation, maintenance and revenue
•	Monitoring by UPNEDA	 Trains EE's to operate and maintain it 	tariff payment	collection done by local entrepreneurs

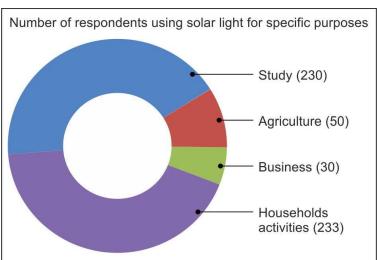
Finance mechanism

UPNEDA	TERI	MERA GAO POWER	MINDA
 Capital subsidy of 30% by MNRE 	 60% TERI subsidy + 40% EE investment Micro-grids under 	Initial investment by MGPPartially	 MNRE provided 30% of the project cost as subsidy
 Remaining 70% borne by UPNEDA TARIFF: INR 150 	NFA: 45% of capital cost shared by EE & bank or wholly by EE + 55% TERI	supported by grants from different agencies • TARIFF:	 Remaining 70% invested by local entrepreneurs
per month	TARIFF: INR5/household/day	Connection fee- INR 50 and weekly tariff of INR 25	• TARIFF: INR 100 per month

Installation cost ranges between Rs 2200/HH to Rs 4000/HH, depending on technical features

Operation and Maintenance




UPNEDA	TERI	MERA GAO POWER	MINDA
 Local person deployed for operation, maintenance and 	 EE's responsible for operation and maintenance 	 MGP team takes care of preventive and breakdown maintenance 	 EE's responsible for operation and maintenance
collection of monthly tariff	 Formal training given by TERI 	Battery replacement to	 Formally trained for operation and maintenance
 Battery replacement to be done by 	 Battery replacement expected by EEs 	be done by MGPOperating	operating
UPNEDA	expected by LLS	without faults	without faults
 Plants are partially operating with some faults 	 Operating without faults 		

Project Impacts

- Fuel cost on kerosene reduced from Rs 80-150 to nil for 68.4% users and less than INR 50 for 31.6% households
- ➤ Increased study hours (from 1 hour to 2 hours)
- Reduction in health issues faced by women
- ➤ 94.4% found the solar light quality very good; Remaining 5.6% reported satisfaction

Conclusion

- ➤ With large number of un-electrified hamlets, potential market for both AC and DC micro-grids in India is huge
- > DC micro-grids can provide a reliable, efficient and sustainable electricity supply at a lower cost with greater effectiveness.
- The DC micro-grid is more flexible and accommodating of the load
- Micro-grids provides good prospects for private sector and social enterprises and serve large number of population
- ➤ However, these startups' prospects might be extinguished in a moment if regular power lines marched into these hamlets without any exit strategy for these micro grids
- ➤ With advent of new interconnection technologies and more clarity on the policy front, the micro-grid and the regular power grid might can possibly co-exist and complement each other, making the village's power supply cleaner and more robust.