SOLAR DRIVEN WATER TREATMENT FOR REMOTE AREAS OF DEVELOPING REGIONS

AN INNOVATIVE AND SUSTAINABLE APPROACH USING SOLAR TECHNOLOGY AND ANODIC OXIDATION

BSW Off-Grid Power Forum at Intersolar Europe 2015

Florian Benz, CEO AUTARCON GmbH Intersolar Europe

Der Innovationspreis für

AUTARCON GmbH – decentralized water treatment

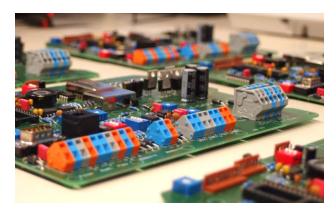
Fakts

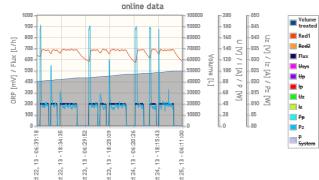
- Spin-off 2010 University of Kassel
- 6 employees
- 30 Units in currently 9 countries: <u>Egypt</u>, India, Laos, Ghana, Gambia, Cameroon,...
- Customers
- NGOs and Governmental Institutions
- Desaster relief
 - Pakistan
 - Nepal earth quake prove towers
- Military Institutions
- Research Institutions

Pure, Simple, Solid,

Private

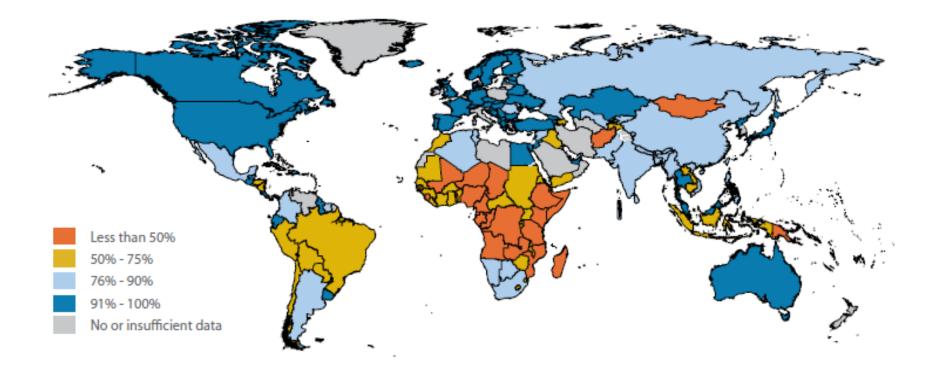
AUTARC 🔊 N





AUTARCON GmbH - Activities

- 1. Drinking water treatment
 - Control of Chlorine electrolytic cells
 - Residual Disinfection
 - Removal of Arsenic, Iron, Manganese
 - Online Monitoring and Quality control
 - For up to 3.000 persons per day
- 2. Wastewater Treatment
 - COD and BOD5 reduction + disinfection
- 3. Load management for optimization of energy efficiency



Conditions in decentralized drinking water supply

- 900 Million people without access to improved water sources
- 82 % of those live in rural areas (unicef 2010)

"Pathogen removal is of most important concern to assure safe drinking water conditions."

WHO 2010

Fotos: Waterkiosk Foundation, AUTARCON

Water Supply in rural developing regions

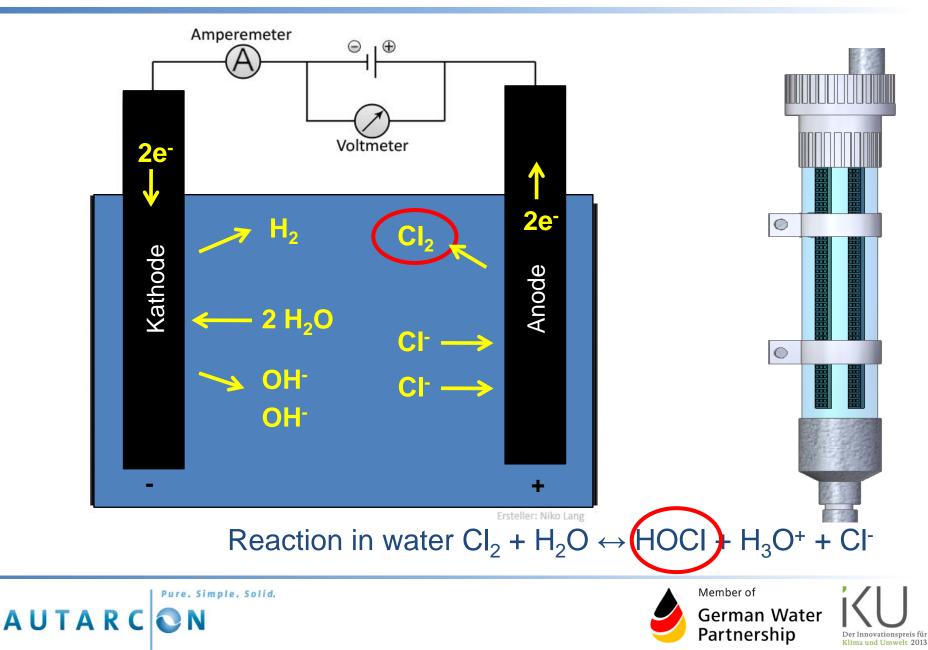
Pure. Simple. Solid.

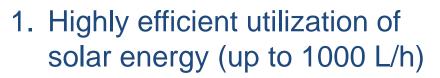
AUTARC N

Fotos: Waterkiosk Foundation

Challenges in off grid water and energy supply

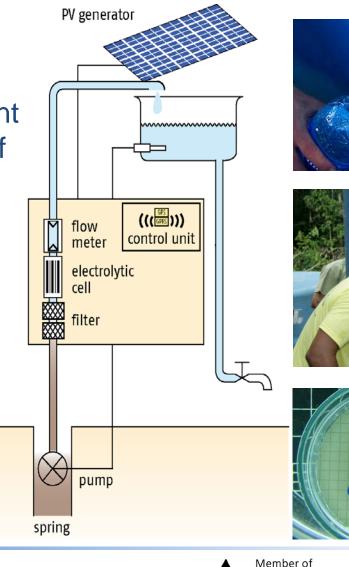
- 1.Continuous supply of **residual disinfectant** (a must!!)
- 2. Constant energy supply
- 3. Simplicity in maintenance
- 4. Water quality control





Chlorine production with Anodic Oxidation (AO)

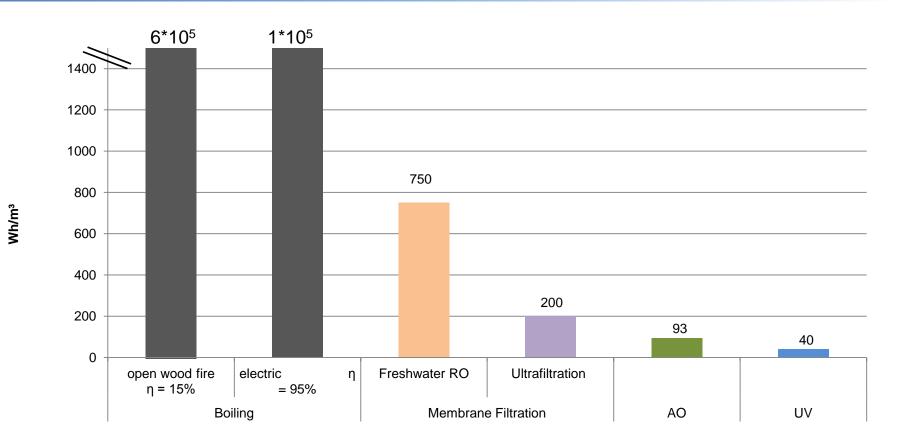
Our solution – SuMeWa|SYSTEM



- 2. Direct production of disinfectant from ions of source water itself
- 3. Chemical free residual Chlorination
- 4. Online control of water quality
- 5. Easy to operate and maintain

AUTARC 🔊 N

Pure, Simple, Solid,



Comparison of energy requirements for water disinfection

In remote areas relevant for dimensioning of solar PV System Example here: Disinfection without pumping and pre- filtration (20h/d Cameroon)

Pure, Simple, Solid, AUTARC

er KU Der Innovationspreis für

Online Water Quality Control – Worst Case

Drop of water quality online data 1000 100000 200 050 Volume 90000 treated 900 180 045 Red1 800 80000 160 040 ORP [mV] / Flux [L/h] Red₂ 700 \leq \leq 70000 140 035 Volume Flux 7 600 60000 120 030 Usys Þ 500 50000 Þ 100 025 Up Ξ 400 40000 020 80 σ 015 P l lp \leq 300 60 30000 Uz Uz 40 200 20000 łz 100 10000 20 05 Pp 0 0 00 Pz 13 - 06:39:18 18:34:35 18:15:43 18:25:09 06:20:26 13 - 06:11:00 06:29:52 ₽ System 1 **Automatic** ĉ, ĉ ĉ, ĉ Oct 24, 13 0ct 22, ' oct 23, ' 0ct 23, ' 0ct 24, ' 0ct 22, 0ct 25, response by

system

Member of

German Water Partnership

Der Innovationspreis für Klima und Umwelt 2013

Link to online monitoring India

Pure, Simple, Solid,

AUTARC 🔊 N

Additional Treatment – Maintenance Free

Removal of:

- Turbidity
- Iron
- Manganese

In the Future:

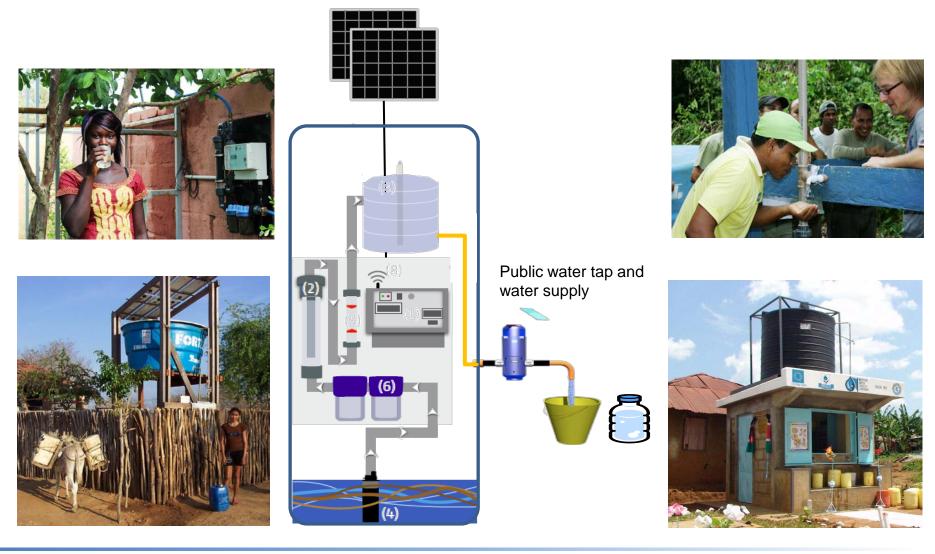
- Arsenic
- Fluoride

Additional Treatment – Maintenance Free

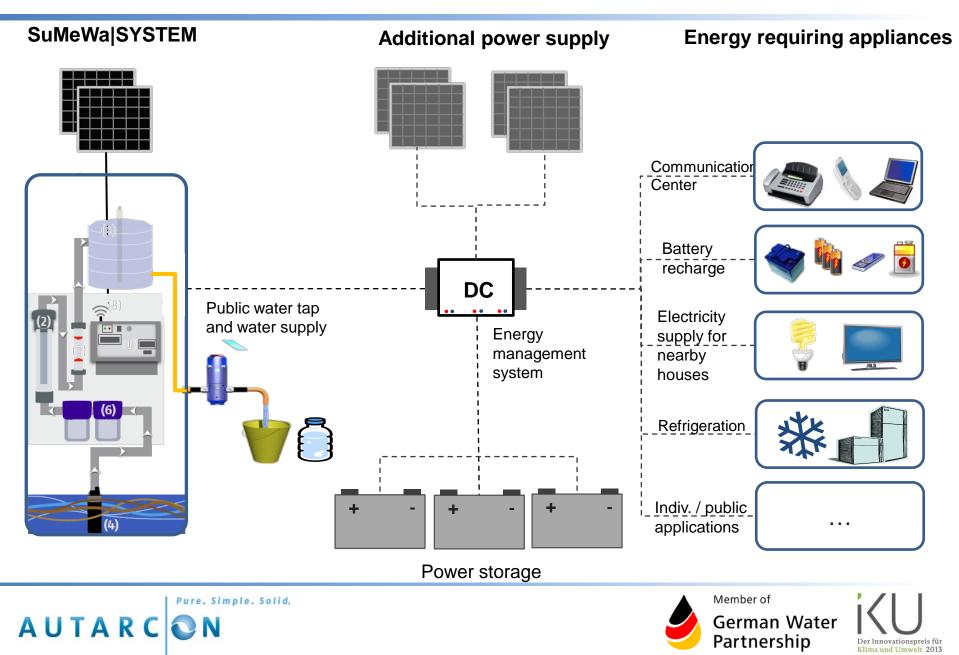
Comparison of different drinking water treatment technologies

	Micro- filtration	Ultra- filtration	Reverse Osmosis	UV	Thermal treatment	SuMeWa
Disinfection efficiency Bacteria Virus Protozoa	+ -/+ +	++ + ++	++ ++ ++	++ ++ -/+	++ ++ ++	+++ +++ ++
Removal of particulate matter	Yes	Yes	Yes	No	No	Yes
Decoloration	-	+/-	+/-	-	-/+	+
Residual disinfectant	No	No	No	No	No	Yes 🗸
Online water quality monitoring	No	No	No	No	No	Yes 🗸
Ease of use	+	-/+		-	++	++
Maintenance requirements	Medium	High	Very High	High	Very low	Very low
Investment cost	Medium	High	Very high	High	Very low	High
Energy consumption	Medium	High	Very high	Very low	Very high	Very low
Operational costs	Medium	Very high	Very high	Very high	Very high	Very low

Source: collection of different sources among them WHO 2008, Röske 2006, Loo 2012, and own assumptions


Pure. Simple. Solid.

AUTARC 🔊 N


Der Innovationspreis für

Business Models – Supply of safe drinking water

"Water, Energy and IT Supply Service Center"

Project: Western Desert Egypt

Pure, Simple, Solid,

AUTARC 🔊 N

Oasis

- Groundwater from 700 m
- Very high iron and manganese content
 - Power supply only with diesel generators (1h per day)
 - Currently 5 units installed
- ~ 500 persons per unit
- Additional 6 units ordered

Western Desert Egypt

Pure. Simple. Solid.

Der Innovationspreis für Klima und Umwelt 2013

Examples AUC RISE Egypt

Installation by local people

Pure. Simple. Solid.

AUTARC 🔊 N

German Water Partnership

Examples Egypt Western Desert

Pure. Simple. Solid.

Examples Egypt Western Desert

Training for Maintenance

Pure. Simple. Solid.

Creation of water business

AUTARC N

Der Innovationspreis für Klima und Umwelt 2013

Creation of water business

"Local" water supply – delivery 30 km

Conference Announcement: Solar Energy Solutions for Electricity and Water Supply

Cairo, Egypt, 7. – 10. October 2015 2 Days Conference Programm 2 Days Excursion into Western Desert

> First International Conference on SOLAR ENERGY SOLUTIONS FOR ELECTRICITY AND WATER SUPPLY IN RURAL AREAS

THE AMERICAN UNIVERSITY IN CAIRO

October 7 - 10, 2015

This conference aims to showcase and discuss promising approaches and applications for different types of renewable energy as sustainable solutions for rural populations with no access to centralized power and water supply. The focus is on solar electricity and its economic applications for village electrification and the supply of safe drinking water. In addition to photovoltaic solutions, small wind generators as well as small hydro and biogas systems for heat and electricity generation will be discussed.

For over a billion people around the globe, safe drinking water and sustainable energy are unavailable. Despite numerous announcements and ambitious plans by national and international organizations, this situation has improved very little over the past 30 years. During the same timeframe, renewable energies have undergone impressive advancements, both in terms of the development of mature technologies and in their economic competitiveness with fossil fuels. This has given rise to new and more economic applications for rural development.

THE AMERICAN UNIVERSITY IN CAIRO الجامعة الأمريكية بالقاهرة Research Institute for a Sustainable Environment

Topics

Papers are invited on the following topics:

Presentations*

- 1. Sustainable systems for the supply of safe drinking water
- 2. Village electrification systems based on renewable energy
- Renewable energy for water pumping and irrigation systems
- 4. Practical examples of renewable energy solutions in rural and urban environments

Panel Discussion

 Financing models for the dissemination of solar energy solutions

Workshop

 Cooperation of government agencies, NGOs and the private sector in developing renewable rural energy solutions

*Submit paper abstracts by June 30 by email to rise@aucegypt.edu . Instructions for submission are available at: www.aucegypt.edu/rise/solarconference

Abstracts will be reviewed by members of the Conference Advisory Board.

Organized by the Research Institute for a Sustainable Environment (RISE), AUTARCON and SolarInput

AUTARC 🔍 N

er KUU Der Innovationspreis für Klima und Umwelt 2013

Pure. Simple. Solid.

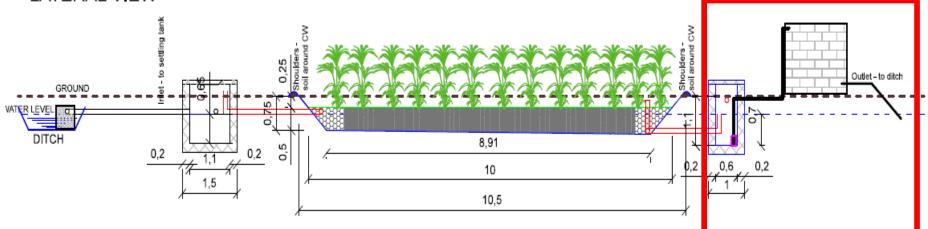
RED Water Film

Questions and Answers

SuMeWa|SYSTEM: Examples worldwide

Examples India: Kalyani University

Setup of bank filtration and solar driven disinfection systems for pond effluent polishing.



IGNTU, MP: gravel bed effluent polishing

Pure. Simple. Solid.

Der Innovationspreis für Klima und Umwelt 2013

IGNTU, MP: Reedbed Effluent polishing

Lalpur, MP: water village supply

Delhi, Pakistan, Gambia, Brazil

India, Ethiopia, Pakistan

Areas of Application

1. Private sector

2. Public water utilities

- Decentralized water treatment
- Water refreshment in storage tanks
- Safe supply of remote villages
- Schools, hospitals, public buildings
- Informal settlements
- Emergency response

Core benefits for public water suppliers

Secure, permanent and safe production of disinfected water

- Compliance with national regulations and standards
- Trustable and reliable drinking water quality
- Very low maintenance and operational costs due to solar energy supply

Permanent online control of water quality allows

- Reduction of maintenance
- Reduction of water quality control (no chlorine tests needed)
- Constantly proven and recorded safe water supply

Maintenance on Demand

- No "preventative" maintenance
- Short reaction time in case of malfunction
- Quick recovery of safe system operation

Core benefits in cases of natural disaster

Easy installation, quick access to clean water

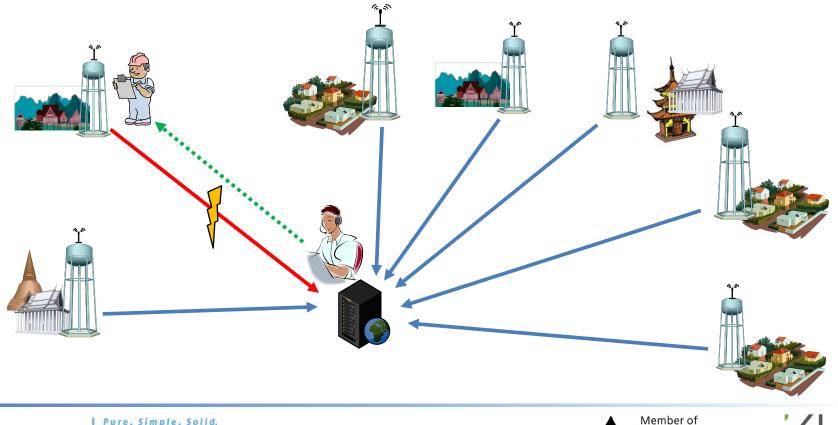
- Only 40 kg
- Complete equipment in one box 85x65x45 cm
- Easy to transport to disaster location
- Installation time 30 min

Pure, Simple, Solid,

AUTARC

- No energy supply required
- Transforms surface water into safe disinfected drinking water
- Permanent online control of water quality

→ Exclusion of drinking water as source for infection



Remote online monitoring of decentralized water supply

Efficient operation and maintenance structure

- > All parameters are automatic controlled and can be sent online
- > Maintenance only required in case of malfunction

AUTARC 🔊 N

Der Innovationspreis für

AUTARCON - Innovation durch Erfahrung

Spezialisierung liegt auf der dezentralen

- Ab- und Trinkwasseraufbereitung
- Überwachung der Wasserhygiene
- Solare Energieversorgung
- für Entwicklungsregionen
- Derzeitige wissenschaftliche Aktivitäten:
- European Union FP7
 - SWINGS India: Nachhaltige Abwasseraufbereitung und Wiederverwendung
- BMBF KMU Innovativ
 - SolArEx Solargetriebene Entarsenierung
 - UFCl₂- Membranfiltration und automatische Reinigung

Bundesministerium für Bildung und Forschung

Legal requirements drinking water supply (excerpt)

Parameter	WHO (2008)	India (IS 10500-2009)		Germany (TVöD)	To be reached with SuMeWa	
		urban	rural			
Chemical						
Residual Chlorine	≥ 0.5 mg/L	min. 0.2	1.0	0.3	0.1 – 2.0 mg/L 🔨	
Turbidity	5	1	5	1	< 1 (Zeolith filter)	
TDS/ Conductivity	No guideline no guidline	500 mg/L	2000 mg/L	No guideline 2790 μS/cm	stays constant 🗸	
Iron	No guideline	0.3 mg/L	0.3 mg/L	0.2 mg/L	< 0.1 mg/L	
Manganese	0.4	0.1	0.3	0.05 mg/L	< 0.05 mg/L 🗸	
Biological						
E.Coli	0	0	0	0	0 🗸	
Cryptosporidium	0	0	0	0	0	

Der Innovationspreis für Klima und Umwelt 2013