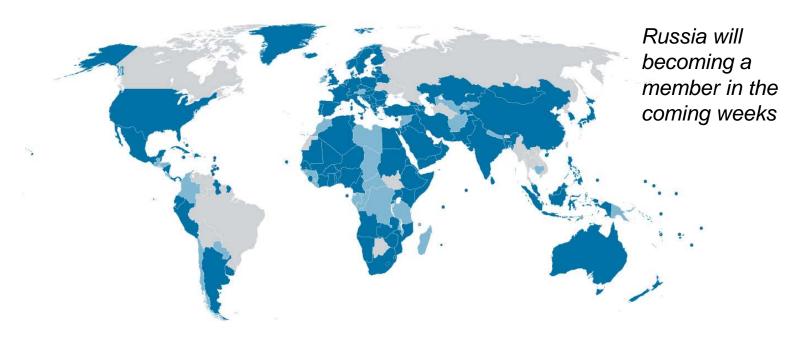


INTERNATIONAL RENEWABLE ENERGY AGENCY

IRENA – Off-Grid-Systems work


Roland Roesch

Intersolar / Bundesverband Solarwirtschaft (BSW)
Munich, Germany, 11 June 2015

The International Renewable Energy Agency

The Voice, Advisory Resource and Knowledge Hub for 171 Governments

Renewable energy can:

- Meet our goals for secure, reliable and sustainable energy
- Provide electricity access to 1.3 billion people
- Promote economic development
- At an affordable cost

Structure and Membership

Headquarters:

Abu Dhabi, United Arab Emirates

Three Programmes:

- Innovation and TechnologyCentre (IITC) in Bonn, Germany
- •Knowledge, Finance and Policy Centre in Abu Dhabi
- •Country Support Programme in Abu Dhabi

Foundation
26 January 2009 in Bonn
International Agency since April 2011
The only international RE agency
worldwide

Scope

Hub, voice and source of objective information for renewable energy

Mandate

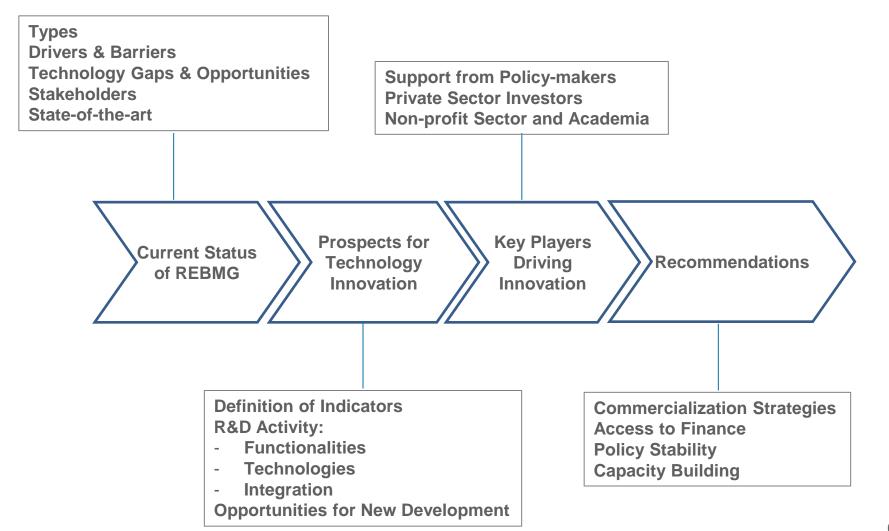
Sustainable deployment of the six forms of renewable energy resources (Biomass, Geothermal, Hydro, Ocean, Solar, Wind)

Innovation Technology Outlook of Renewable Energy based MiniGrids

PROSPECTS FOR DEPLOYMENT IN THE NEXT TWO DECADES

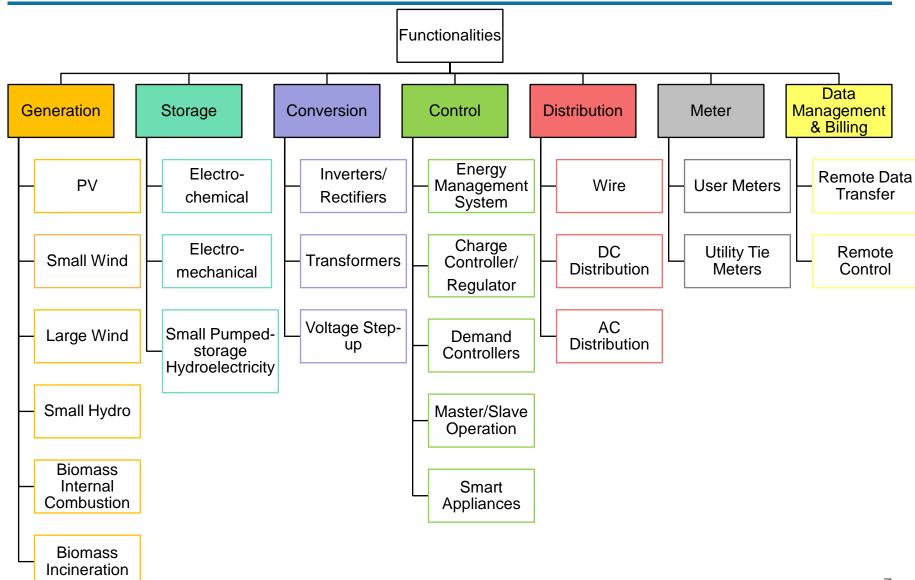
June 2015

Objectives


This report evaluates technology innovations and mechanisms for successful implementation of renewable energy based mini-grids. It answers the following key questions:

- What is the current status of the renewable energy based mini-grids?
- What technology innovations are expected in the next two decades?
- What role could policy-makers, the private sector and other key players play in order to support innovation in mini-grids technology?

Report coming up in 2015


Contents

State-of-the-art: Database

The IRENA Project Navigator – a platform to develop renewable energy projects

www.irena.org/navigator

What is the IRENA Project Navigator?

The Challenge of Renewable Energy Technology (RET) projects:

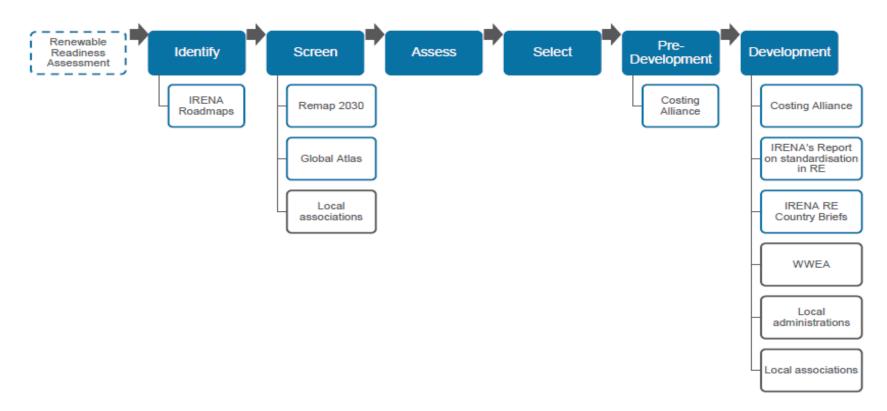
- Failures to prove bankability to funding institutions
- Insufficient knowledge on project proposal development
- Higher project development costs
- High risk of project failure

Objectives of the Project Navigator:

- Improvement of RET project proposals
- High quality implementation of RET project proposals
- Adaptation to the project's specific conditions, aims and framework
- Efficient use of funds

Scope: IRENA Project Navigator includes

- All RETs
- Different finance types: grants, loans, equity
- Project sizes: from individual use to utility scale projects
- Global: all geographical regions


What is the IRENA Project Navigator?

The Project Navigator is a modular approach

The Project Navigator uses a modular approach and can be linked to many activities inside of IRENA as well as outside of the organization.

Who will benefit from the IRENA

Project Navigator?

Member Countries

- Compliance with stakeholders requirements
- Higher quality of RET projects
- Lower implementation costs
- Understandable administrative processes
- Efficient administration
- Capacity building

Project Developers

- Best practices
- Identification of needs/gaps
- Easier and faster funding opportunities
- Higher quality of RET projects

Municipalities

- Capacity building
- Spread social awareness
- Decisionmaking and investment participation

Academia

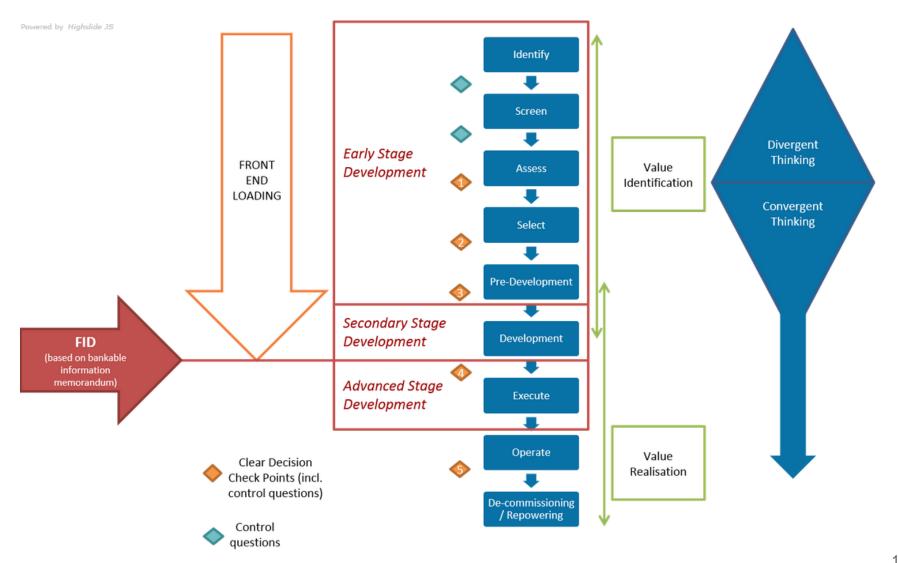
- RET project planning guidance
- Input for curriculum development
- Capacity building

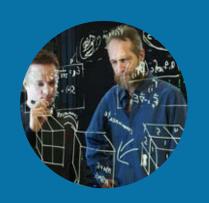
Financing Sector

- Easier and faster project evaluation
- Identification of bankable projects

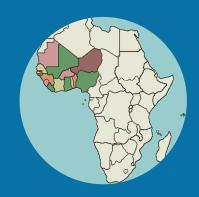
rres.

- <u>Conserve-Energy-Future</u>. July 5, 2013; http://conserve-energy-future.com/lmages/SolarEnergy_Advantage.jpg
 - <u>Ecodyfi</u>. July 5, 2013; http://www.ecodyfi.org.uk/images/turbineandshareholders.jpg
 <u>Cloudfront</u>. July 5, 2013; http://dqbasmyouzti2.cloudfront.net/content/images/articles/coins-310x224.png
- Cloudfront. July 5, 2013; http://dqbasmyouzti2.cloudfront.net/content/images/articles/coins-310x224.
 OLX. December 4, 2013; http://peshawar.olx.com.pk/academic-learning-centre-iid-153763443


The RET Project Development Communication and Coordination Platform



Process Overview



IRENA Project Navigator's Dimensions

Technical Concepts

Regional Adaptations

RE Funds Database

Technical Concept Guidelines Mini/Micro-grid Applications

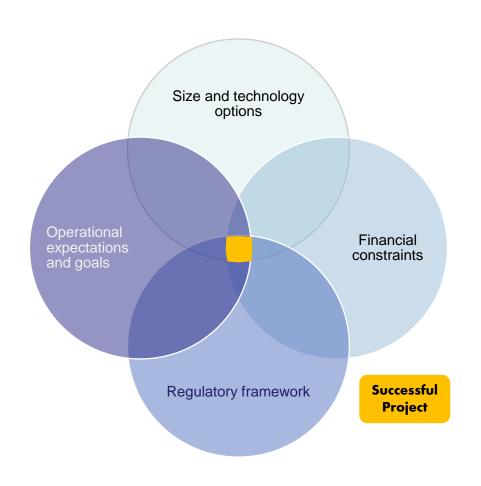
Why?

- Technical Concept Guidelines should facilitate project development and deployment of all technologies.
- Developers and Member states have shown interest in Mini/micro grids

Objective

 To show project developers how to select plan a successful Mini/Micro-grid project, taking into account external influences, such as legislation, stakeholders or contracts

Technical Concept Guidelines Mini/Micro-grid Applications



Scope

- Technology overview
- Project planning and design
- Financial assessment
- Project execution and commissioning
- 0&M

Main Features

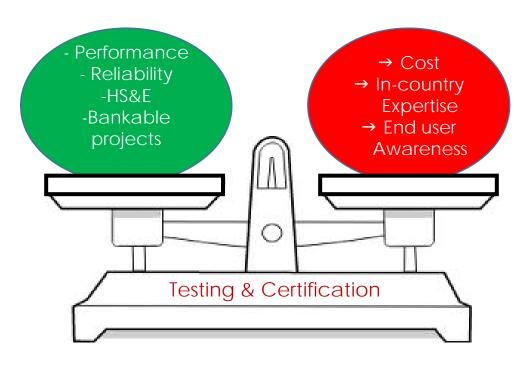
- Minimum requirements for bankability of a Mini/Micro-grid project
- Comparison of possible options
- Case studies and tools
- Financial model
- Lessons learned / Do's and Don't's from previous projects

Next Steps: 2015

- Technical Concepts:
 - June, 2015: Photovoltaic Technical Concept
 - Mini hydro
 - Mini-grid applications
 - Bioenergies
- 6 Pilot studies in cooperation with member countries and with developers in member countries
- Regional Adaptation
 - 2015: Adapted version for Small Island Development States (SIDS) and West Africa
 - Other regional adaptations (LAC, MENA, Pacific regions)
- Constant and continuous improvement of the tool
- Continued identification of partners to progress the tool

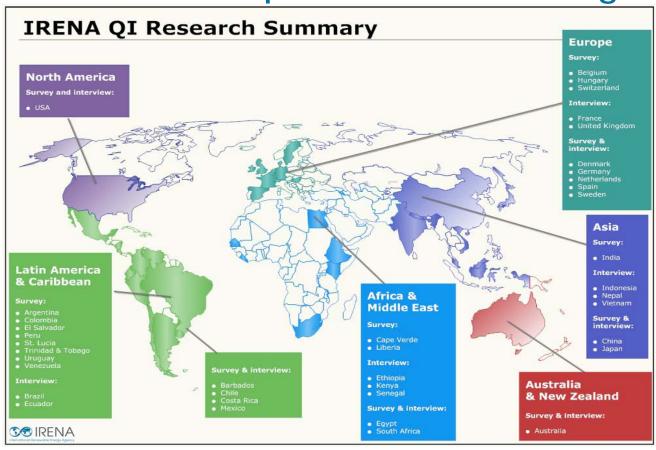
Developing Quality Infrastructure for Renewable Energies

PROSPECTS FOR DEPLOYMENT IN THE NEXT TWO DECADES


October 2015

IRENA's Study on Developing Quality Infrastructure for solar water heaters

Key question of the study:


 How to develop and implement QA mechanisms while balancing costs and benefits?

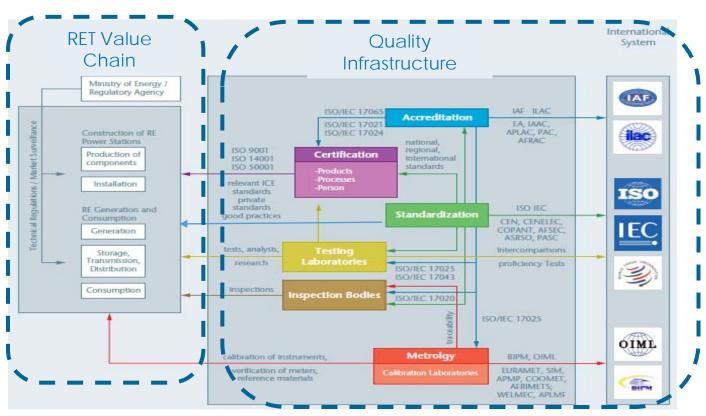
Report expected to be released in October 2015

Study is based on experience from international experts in SWH technologies

OI experts, project developers, manufacturers, policy-makers (>40 countries)

- 83 survey respondents
- Invaluable feedback from interviews with 34 experts

QA is based on sound standards (ISO TC 180)...


Identification of the Standard	Title of the Standard Solar Thermal Products and Components	Status/Comments
Solar Thermal Collectors		
ISO 9806: 2013	Solar energy - Solar thermal collectors - Test methods	Recently revised and published. Considers performance and durability
Solar Thermal Systems		
ISO 9459-3: 2005	Solar heating - domestic water heating systems - Part 3: Outdoor test methods for system performance characterization and yearly performance prediction of solar-only systems	Only performance. Daily time steps. Does not treat auxiliary interactions
ISO 9459-4: 2013	Solar heating - domestic water heating systems - Part 4: System performance by means of component tests and computer simulation	Only performance. Simplifications discussed in Annex C
ISO 9459-5: 2007	Solar heating - Domestic water heating systems - Part 5: System performance characterization by means of whole-system tests and computer simulation	Only performance. Dynamic System Test Method

ISO TC 180 Standards for SWH

...but also requires an infrastructure to be operationalised

- Testing laboratories
- Certification
 n bodies
- Accreditati on bodies
- Calibration laboratories

Source: Physikalisch-Technische Bundesanstalt

Country experiences

USA

Challenges:

 Existence of two standards: ICC/SRCC and IAPMO

Possible scenarios:

 Both SRCC and IAPMO are considering

Brazil

Challenges:

- Only two testing labs for >100 manufacturers
- Lack of regional harmonisation

Possible scenarios:

 Ongoing work on regional harmonisation

China

Challenges:

- More than 2,000 SWH manufacturers many in rural area
- Lack of a

Possible scenarios:

 Adopt ISO standards but requires work

More country cases available in the report

around only one national standard rupe systems

Proposed approach to develop quality infrastructure - Incremental approach

SOLAR WATER HEATER (SWH)
MARKET AND QI STAGES

MARKET

ASSESSMENT

Quality
infrastructure
to be
developed
hand-in-hand
with country
context and
market stage
for SWH
technologies

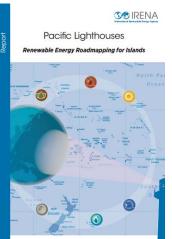
Analyses: Analyze cost/benefit for SWHs and cost of SWH QI stage options

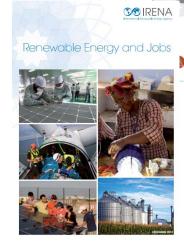
Planning: Determine national/regional QI and policy options by market stage

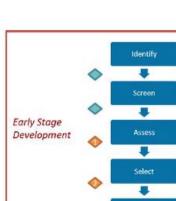
SMART GRIDS AND RENEWABLES

A Guide for Effective Deployment

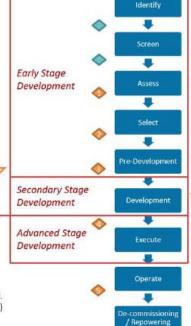








S IRENA



International Renewable Energy Agency

www.irena.org

www.navigator.irena.org.

