SHELL FOUNDATION HEH PROJECT WATER BOILING TEST

DATA AND CALCULATION FORM (the form can be used with stoves that cook between one and four pots)*

Shaded cells require user input; unshaded cells automatically display outputs

Qualitative data			
Name(s) of Tester(s)			*N
			en
Test Number			the the
Date			tha
Stove type/model		ſ	lf po
Location			the
Type of fuel	Average Hardwood	•	(0%
Wind conditions	(Select from list)	▼	calo

Note, if you are testing a multi-pot stove, the data entry places in the simmering test for pots other than he primary pot are left blank intentionally because he simmering test can not account for pots other han the primary pot.

If possible, enter a locally derived calorific value. Enter the value in cell E19 if the calorific value is for dry fuel (0% MC). Use cell E22 if it is for moist fuel. If a local calorific value can not be obtained, choose the closest fuel from this menu.

Initial Test Conditions

Data	value	units	label	Data	value	units	label
Air temp		°C		Dry weight of Pot # 1 (grams)	1,000	g	P1
Average dimensions of fuel (if solid)		cm x cm	x cm	Dry weight of Pot # 2 (grams)	1,000	g	P2
Gross calorific value (dry fuel)	19,734	kJ/kg	HHV	Dry weight of Pot # 3 (grams)		g	P3
Net calorific value (dry fuel)	18,414	kJ/kg	LHV	Dry weight of Pot # 4 (grams)		g	P4
Wood moisture content (% - wet basis)	20%	%	m	Weight of container for char (grams)	50	g	k
Effective calorific value (accounting for fuel moisture)	14,195	kJ/kg	C _{eff}	Local boiling point	100.0	°C	T _b

Description of stove and other comments:

Description of stove and other comments:
BASIC TEST DATA

		COLD START HIGH POWER			HOT STAF	RT HIGH F	POWER (OP	TIONAL)	SIMMER TEST				
		Start		Finish: w	hen	Star	rt	Finish:	when	Star	t:when	Finish:	45 min
				Pot #1 b				Pot #1			1 boils	after Pot	
Measurements	Units	data la	abel	data	label	data	label	data	label	data	label	data	label
Time (in 24 hour units)	hr:min	12:00	t _{ci}	12:30	t _{cf}		t _{hi}		t _{hf}		t _{si}		t _{sf}
Weight of wood	g	2500	f _{ci}	1500	f _{cf}		f _{hi}		f _{hf}		f _{si}		f _{sf}
Water temperature, Pot # 1	°C	20.0 T	Г1 _{сі}	100.0	$T1_{cf}$	-	T1 _{hi}		T1 _{hf}		∽ ^{T1} si		T1 _{sf}
Water temperature, Pot # 2	°C	20.0 T	Г2 _{ci}	75.0	T2 _{cf}		T2 _{hi}		T2 _{hf}	T1 _{si} is	set equal to	T _b because]
Water temperature, Pot # 3	°C	20.0 T	ГЗ _{сі}	50.0	$T3_{cf}$	-	T3 _{hi}		T3 _{hf}	the sir	nmer test sta pot has bo	arts after the	
Water temperature, Pot # 4	°C	Т	Г4 _{сі}		$T4_{cf}$		T4 _{hi}		T4 _{hf}		pot has be		J
Weight of Pot # 1 with water	g	6000 P	P1 _{ci}	5700	$P1_{cf}$		P1 _{hi}		P1 _{hf}		P1 _{si}		P1 _{sf}
Weight of Pot # 2 with water	g	6000 P	P2 _{ci}	5950	$P2_{cf}$		P2 _{hi}		P2 _{hf}	P1	si should be	the mass]
Weight of Pot # 3 with water	g		⊃3 _{ci}		$P3_{cf}$		P3 _{hi}		P3 _{hf}			ne at the end	
Weight of Pot # 4 with water	g	P	P4 _{ci}		$P4_{cf}$		P4 _{hi}		P4 _{hf}		ne hot start t	est (P1 _{hf}).	
Fire-starting materials (if any)													_
Weight of charcoal+container	g			100	c _c				C _h				Cs
		COLD START	r	HOT STAR	т	SIMM	IFR TES		ATIONS	DIFFER	FROM HIG		TEST)
		COLD START		HOT STAR					ATIONS	DIFFER		GH POWER	
Calculations/Results	<u>Units</u>	data la	abel	HOT STAR	label	Calcu	lations/	Results			<u>Units</u>	GH POWER <u>data</u>	label
Wood consumed (moist)	<u>Units</u> g	<u>data la</u> 1,000 f	abel f _{cm}	data -	<u>label</u> f _{hm}	Calcu Wood	Ilations/	Results led during the	he simme	er phase	<u>Units</u> (mc g		<u>label</u> f _{sm}
Wood consumed (moist) Net change in char during test	<u>Units</u> g g	<u>data</u> <u>la</u> 1,000 f 50 Δ	abel f _{cm} ∆c _c	<u>data</u> 	<u>label</u> f _{hm} Δc _h	Calcu Wood Net cl	Ilations/ consum hange in	Results led during the char during	he simme j test pha	er phase	<u>Units</u> (mc g g	<u>data</u> 	label f _{sm} Δc _s
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed	<u>Units</u> g g g	data la 1,000 f 50 Δ 701 f	abel f _{cm} ∆c _c f _{cd}	<u>data</u> 	<u>label</u> f _{hm} Δc _h f _{hd}	Calcu Wood Net cl Equiv	Ilations/ consum hange in alent dry	Results led during the char during wood cons	he simme j test pha	er phase	Units (magg g	<u>data</u> 	<u>label</u> f _{sm} Δc _s f _{sd}
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots	Units g g g g	data la 1,000 f 50 Δ 701 f 350 v	abel f _{cm} Δc _c f _{cd} w _{cv}	<u>data</u> 	<u>label</u> f _{hm} Δc _h f _{hd} W _{hv}	Calcu Wood Net cl Equiv Water	Ilations/I I consum hange in alent dry r vaporize	Results led during the char during wood cons led	he simme i test pha sumed	er phase	Units (mc g g g g	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \underline{} \\ \Delta c_s \\ \underline{} \\ f_{sd} \\ w_{sv} \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled	Units 9 9 9 9 9 9	data la 1,000 f 50 2 701 f 350 v 8,103 v	<u>abel</u> f _{cm} Δc _c f _{cd} w _{cv} w _{cr}	<u>data</u> 	<u>label</u> f _{hm} Δc _h f _{hd} w _{hv} w _{hr}	Calcu Wood Net cl Equiv Water Water	Ilations/I I consum hange in alent dry r vaporize r remainin	Results led during the char during wood cons led ng at end -	he simme g test pha sumed Pot # 1	er phase se	Units (mc g g g g g	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \underline{\Delta c_s} \\ f_{sd} \\ w_{sv} \\ w_{sr} \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1	Units g g g g g min	data la 1,000 f 50 2 701 f 350 v 8,103 v 29 2	<u>abel</u> f _{cm} Δc _c f _{cd} w _{cv} w _{cr}	<u>data</u> 	$\frac{ abe }{f_{hm}}$ Δc_{h} f_{hd} w_{hv} w_{hr} Δt_{h}	Calcu Wood Net cl Equiv Water Water Time	Ilations/I I consum hange in alent dry r vaporize r remainin of simme	Results and during the char during wood cons and ang at end - ar (should b	he simme g test pha sumed Pot # 1	er phase se	Units (mc g g g g g min	<u>data</u> 	label f _{sm} Δcs f _{sd} wsv wsr Δts
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1 Temp-corr time to boil Pot # 1	Units 9 9 9 9 9 9 min min	data la 1,000 f 50 Δ 701 f 350 V 8,103 V 29 Δ 27 Δ	abel f _{cm} Δc _c f _{cd} w _{cv} w _{cr} Δt _c Δt _c	<u>data</u> 	$\begin{array}{c} \underline{ abe } \\ f_{hm} \\ \Delta c_{h} \\ f_{hd} \\ w_{hv} \\ w_{hr} \\ \Delta t_{h} \\ \Delta t_{h}^{T} \\ \end{array}$	Calcu Wood Net cl Equiv Water Water Time Thern	Ilations/I I consum hange in alent dry r vaporize r remainin of simme nal efficie	Results and during the char during wood cons and ang at end - ar (should b	he simme g test pha sumed Pot # 1	er phase se	Units (mc g g g g min %	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \Delta c_s \\ f_{sd} \\ W_{sv} \\ W_{sr} \\ \Delta t_s \\ h_s \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1 Temp-corr time to boil Pot # 1 Thermal efficiency	Units 9 9 9 9 min min %	data la 1,000 f 50 Δ 701 f 350 v 8,103 v 29 Δ 27 Δ 28% h	abel f _{cm} Δc _c f _{cd} w _{cv} w _{cr} Δt _c Δt ^T _c h _c	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{hm} \\ \Delta c_{h} \\ f_{hd} \\ w_{hv} \\ w_{hr} \\ \Delta t_{h} \\ \Delta t_{h}^{T} \\ h_{h} \end{array}$	Calcu Wood Net cl Equiv Water Water Time Thern Burnin	Ilations/I I consum hange in ralent dry r vaporize r remainin of simme nal efficie ng rate	Results led during the char during wood consider ed ing at end - er (should be ency	he simme g test pha sumed Pot # 1 e ~45 mi	er phase se	Units (mc g g g g min % g/min	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \Delta C_s \\ f_{sd} \\ W_{sv} \\ W_{sr} \\ \Delta t_s \\ L \\ h_s \\ r_{sb} \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1 Temp-corr time to boil Pot # 1 Thermal efficiency Burning rate	Units g g g min min % g/min	data la 1,000 f 50 Δ 701 f 350 V 8,103 V 29 Δ 27 Δ 28% I 24 r	abel f _{cm} Δc _c f _{cd} w _{cv} w _{cr} Δt _c Δt ^T _c h _c	<u>data</u>	$\begin{array}{c} \underline{label} \\ f_{hm} \\ \Delta c_{h} \\ f_{hd} \\ w_{hv} \\ w_{hr} \\ \Delta t_{h} \\ \Delta t_{h} \\ \Delta t_{h} \\ h_{h} \\ r_{hb} \end{array}$	Calcu Wood Net cl Equiv Water Time Time Thern Burnin Speci	Ilations/I I consum hange in ralent dry r vaporize r remainin of simme nal efficie ng rate fic fuel co	Results and during the char during wood cons and ang at end - ar (should b	he simme g test pha sumed Pot # 1 e ~45 mi	er phase se	Units (mc g g g g min % g/min g/liter	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \Delta C_s \\ f_{sd} \\ W_{sv} \\ W_{sr} \\ \Delta t_s \\ h_s \\ r_{sb} \\ SC_s \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1 Temp-corr time to boil Pot # 1 Thermal efficiency Burning rate Specific fuel consumption	Units 9 9 9 9 min min % g/min g/liter	data la 1,000 f 50 Δ 701 f 350 V 8,103 V 29 Δ 27 Δ 28% I 24 r 87 S	abel f _{cm} Δc _c f _{cd} w _{cv} ω _{cv} Δt _c Δt ^T _c h _c SC _c	<u>data</u>	$\begin{array}{c} \underline{label} \\ f_{hm} \\ \Delta c_{h} \\ f_{hd} \\ w_{hv} \\ w_{hr} \\ \Delta t_{h} \\ \Delta t_{h} \\ \Delta t_{n}^{T} \\ h_{h} \\ r_{hb} \\ SC_{h} \end{array}$	Calcu Wood Net cl Equiv Water Water Time Thern Burnir Speci Firepo	Ilations/I I consum hange in alent dry r vaporize r remainin of simme nal efficie ng rate fic fuel co ower	Results and during the char during wood conse ed ng at end - er (should b ency onsumption	he simme g test pha sumed Pot # 1 e ~45 mi	er phase se	Units (mc g g g g min % g/min	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \Delta c_s \\ f_{sd} \\ W_{sv} \\ W_{sr} \\ \Delta t_s \\ h_s \\ r_{sb} \\ SC_s \\ FP_s \end{array}$
Wood consumed (moist) Net change in char during test Equivalent dry wood consumed Water vaporized from all pots Effective mass of water boiled Time to boil Pot # 1 Temp-corr time to boil Pot # 1 Thermal efficiency Burning rate	Units g g g min min % g/min	data la 1,000 f 50 Δ 701 f 350 V 8,103 V 29 Δ 27 Δ 28% I 24 r 87 S 81 S	abel f _{cm} Δc _c f _{cd} w _{cv} w _{cr} Δt _c Δt ^T _c h _c	<u>data</u>	$\begin{array}{c} \underline{label} \\ f_{hm} \\ \Delta c_{h} \\ f_{hd} \\ w_{hv} \\ w_{hr} \\ \Delta t_{h} \\ \Delta t_{h} \\ \Delta t_{h} \\ h_{h} \\ r_{hb} \end{array}$	Calcu Wood Net cl Equiv Water Water Time Thern Burnir Speci Firepo	Ilations/I I consum hange in ralent dry r vaporize r remainin of simme nal efficie ng rate fic fuel co	Results and during the char during wood conse ed ng at end - er (should b ency onsumption	he simme g test pha sumed Pot # 1 e ~45 mi	er phase se	Units (mc g g g g min % g/min g/liter	<u>data</u> 	$\begin{array}{c} \underline{label} \\ f_{sm} \\ \Delta C_s \\ f_{sd} \\ W_{sv} \\ W_{sr} \\ \Delta t_s \\ h_s \\ r_{sb} \\ SC_s \end{array}$

	_
Comments on the High Power - Cold Start Test:	٦
	-
Comments on the High Power - Hot Start Test:	
Comments on the Low Power/Simmer Test:	٦
COMMENTS	

SHELL FOUNDATION HEH PROJECT WATER BOILING TEST

DATA AND CALCULATION FORM (the form can be used with stoves that cook between one and four pots)*

Shaded cells require user input; unshaded cells automatically display outputs

Qualitative data

Name(s) of Tester(s)			*No
			entr
Test Number			the the
Date			thar
Stove type/model		ſ	If pos
Location			the v
Type of fuel	(Select from list)		(0%
Wind conditions	(Select from list)	▼	calori

*Note, if you are testing a multi-pot stove, the data entry places in the simmering test for pots other than the primary pot are left blank intentionally because the simmering test can not account for pots other than the primary pot.

If possible, enter a locally derived calorific value. Enter the value in cell E19 if the calorific value is for dry fuel (0% MC). Use cell E22 if it is for moist fuel. If a local calorific value can not be obtained, choose the closest fuel from this menu.

Initial Test Conditions

value	units	label	Data	value	units	label
	°C		Dry weight of Pot # 1 (grams)		g	P1
	cm x cm	x cm	Dry weight of Pot # 2 (grams)		g	P2
-	kJ/kg	HHV	Dry weight of Pot # 3 (grams)		g	P3
	kJ/kg	LHV	Dry weight of Pot # 4 (grams)		g	P4
	%	m	Weight of container for char (grams)		g	k
-	kJ/kg	\mathbf{c}_{eff}	Local boiling point		°C	T _b
	value	C Cm x cm - kJ/kg - kJ/kg %	C cm x cm x cm - kJ/kg HHV - kJ/kg LHV % m	°CDry weight of Pot # 1 (grams)cm x cm x cmDry weight of Pot # 2 (grams)-kJ/kgHHV-kJ/kgLHVbry weight of Pot # 3 (grams)-%mWeight of container for char (grams)	°C Dry weight of Pot # 1 (grams) cm x cm x cm Dry weight of Pot # 2 (grams) - kJ/kg HHV - kJ/kg LHV % m Weight of Pot # 4 (grams)	°CDry weight of Pot # 1 (grams)gcm x cm x cmDry weight of Pot # 2 (grams)g-kJ/kgHHVDry weight of Pot # 3 (grams)g-kJ/kgLHVDry weight of Pot # 4 (grams)g%mWeight of container for char (grams)g

		COLD START HIGH POWER			HOT STAF	rt high f	OWER (OP	FIONAL)		SIMM	ER TEST		
		Star	t	Finish: Pot #1	-	Sta	rt	Finish: Pot #1	-	Start:v Pot #1		Finish: 4 after Pot	
Measurements	Units	data	label	data	label	data	label	data	label	data	label	data	label
Time (in 24 hour units)	hr:min		t _{ci}		t _{cf}		t _{hi}		t _{hf}		t _{si}		t _{sf}
Weight of wood	g		f _{ci}		f _{cf}		f _{hi}		f _{hf}		f _{si}		f _{sf}
Water temperature, Pot # 1	°C		T1 _{ci}		T1 _{cf}		T1 _{hi}		T1 _{hf}		T1 _{si}		T1 _{sf}
Water temperature, Pot # 2	°C		T2 _{ci}		T2 _{cf}		T2 _{hi}		T2 _{hf}	T1 _{si} is s	et equal to	T _b because	
Water temperature, Pot # 3	°C		T3 _{ci}		T3 _{cf}		T3 _{hi}		T3 _{hf}	the simm	ner test sta	arts after the	
Water temperature, Pot # 4	°C		T4 _{ci}		T4 _{cf}		T4 _{hi}		T4 _{hf}		pot has bo	iled.	
Weight of Pot # 1 with water	g		P1 _{ci}		P1 _{cf}		P1 _{hi}		P1 _{hf}		P1 _{si}		P1 _{sf}
Weight of Pot # 2 with water	g		P2 _{ci}		P2 _{cf}		P2 _{hi}		P2 _{hf}		should be t	the mass]
Weight of Pot # 3 with water	g		P3 _{ci}		P3 _{cf}		P3 _{hi}		P3 _{hf}	remaining	in pot one	e at the end of	
Weight of Pot # 4 with water	g		P4 _{ci}		P4 _{cf}		P4 _{hi}		P4 _{hf}	the h	not start te	st (P1 _{hf}).	J
Fire-starting materials (if any)			_		_				_				
Weight of charcoal+container	g				Cc				C _h				Cs

	(COLD ST	ART	HOT STA	RT	SIMMER TEST (CALCULATIONS DIFFER FROM HIGH POWER TEST)					
Calculations/Results	<u>Units</u>	<u>data</u>	label	<u>data</u>	label	Calculations/Results	<u>Units</u>	<u>data</u>	label		
Wood consumed (moist)	g	-	f _{cm}	-	f _{hm}	Wood consumed during the simmer phase (mc g	-	f _{sm}		
Net change in char during test	g	-	Δc_{c}	-	Δc_h	Net change in char during test phase	g	-	Δc_s		
Equivalent dry wood consumed	g	-	f _{cd}	-	f _{hd}	Equivalent dry wood consumed	g	-	f_{sd}		
Water vaporized from all pots	g	-	W _{cv}	-	W _{hv}	Water vaporized	g	-	W _{sv}		
Effective mass of water boiled	g	-	W _{cr}	-	W _{hr}	Water remaining at end - Pot # 1	g	-	W _{sr}		
Time to boil Pot # 1	min	-	Δt_c	-	Δt_h	Time of simmer (should be ~45 minutes)	min	-	Δt _s		
Temp-corr time to boil Pot # 1	min	-	Δt_{c}^{T}	-	Δt_{h}^{T}	Thermal efficiency	%		h _s		
Thermal efficiency	%		h _c		h _h	Burning rate	g/min	-	r _{sb}		
Burning rate	g/min	-	r _{cb}	-	r _{hb}	Specific fuel consumption	g/liter	-	SCs		
Specific fuel consumption	g/liter	-	SCc	-	SCh	Firepower	watts	-	FPs		
Temp-corr sp consumption	g/liter	-	SC ^T c	-	SC^{T}_{h}	Turn down ratio		-	TDR		
Firepower	watts	-	FP_{c}	-	FP_{h}						
HOT START, COLD START, AN	D SIMME	R TESTS									

Comments on the High Power - Cold Start Test:
Comments on the High Power - Hot Start Test:
Comments on the Low Power/Simmer Test:
COMMENTS

SHELL FOUNDATION HEH PROJECT WATER BOILING TEST

DATA AND CALCULATION FORM (the form can be used with stoves that cook between one and four pots)*

Shaded cells require user input; unshaded cells automatically display outputs

Qualitative data

Name(s) of Tester(s)			*No
			entr
Test Number			the the
Date			thar
Stove type/model		ſ	If pos
Location			the v
Type of fuel	(Select from list)		(0%
Wind conditions	(Select from list)	▼	calori

*Note, if you are testing a multi-pot stove, the data entry places in the simmering test for pots other than the primary pot are left blank intentionally because the simmering test can not account for pots other than the primary pot.

If possible, enter a locally derived calorific value. Enter the value in cell E19 if the calorific value is for dry fuel (0% MC). Use cell E22 if it is for moist fuel. If a local calorific value can not be obtained, choose the closest fuel from this menu.

Initial Test Conditions

Data	value	units	label	Data	value	units	label
Air temp		°C		Dry weight of Pot # 1 (grams)		g	P1
Average dimensions of fuel (if solid)		cm x cm	x cm	Dry weight of Pot # 2 (grams)		g	P2
Gross calorific value (dry fuel)	-	kJ/kg	HHV	Dry weight of Pot # 3 (grams)		g	P3
Net calorific value (dry fuel)		kJ/kg	LHV	Dry weight of Pot # 4 (grams)		g	P4
Wood moisture content (% - wet basis)		%	m	Weight of container for char (grams)		g	k
Effective calorific value		kJ/kg	C _{eff}	Local boiling point		°C	T _b
(accounting for fuel moisture)							
Description of stove and other comments:							
BASIC TEST DATA							

		COLD START HIGH POWER			HOT START HIGH POWER (OPTIONAL)			SIMMER TEST					
		Star	t	Finish: Pot #1	-	Sta	Start Finish: when Pot #1 boils		Start:when Pot #1 boils		Finish: 45 min after Pot #1 boils		
Measurements	Units	data	label	data	label	data	label	data	label	data	label	data	label
Time (in 24 hour units)	hr:min		t _{ci}		t _{cf}		t _{hi}		t _{hf}		t _{si}		t _{sf}
Weight of wood	g		f _{ci}		f _{cf}		f _{hi}		f _{hf}		f _{si}		f _{sf}
Water temperature, Pot # 1	°C		T1 _{ci}		T1 _{cf}		T1 _{hi}		T1 _{hf}		T1 _{si}		T1 _{sf}
Water temperature, Pot # 2	°C		T2 _{ci}		T2 _{cf}		T2 _{hi}		T2 _{hf}	T1 _{si} is s	et equal to	T _b because	
Water temperature, Pot # 3	°C		T3 _{ci}		T3 _{cf}		T3 _{hi}		T3 _{hf}	the simm	ner test sta	arts after the	
Water temperature, Pot # 4	°C		T4 _{ci}		T4 _{cf}		T4 _{hi}		T4 _{hf}		pot has bo	iled.	
Weight of Pot # 1 with water	g		P1 _{ci}		P1 _{cf}		P1 _{hi}		P1 _{hf}		P1 _{si}		P1 _{sf}
Weight of Pot # 2 with water	g		P2 _{ci}		P2 _{cf}		P2 _{hi}		P2 _{hf}		should be t	the mass	-
Weight of Pot # 3 with water	g		P3 _{ci}		P3 _{cf}		P3 _{hi}		P3 _{hf}	remaining	in pot one	e at the end of	
Weight of Pot # 4 with water	g		P4 _{ci}		P4 _{cf}		P4 _{hi}		P4 _{hf}	the h	not start te	st (P1 _{hf}).	
Fire-starting materials (if any)					_				_				
Weight of charcoal+container	g				Cc			<u></u>	C _h				Cs
vveight of charcoal+container	g				C _c				_ C _h				c

	(COLD ST	ART	HOT STA	RT	SIMMER TEST (CALCULATIONS DIFFER FROM HIGH POWER TEST)				
Calculations/Results	<u>Units</u>	<u>data</u>	label	<u>data</u>	label	Calculations/Results	<u>Units</u>	<u>data</u>	label	
Wood consumed (moist)	g	-	f _{cm}	-	f _{hm}	Wood consumed during the simmer phase (mc g	-	f _{sm}	
Net change in char during test	g	-	Δc_{c}	-	Δc_h	Net change in char during test phase	g	-	Δc_s	
Equivalent dry wood consumed	g	-	f _{cd}	-	f _{hd}	Equivalent dry wood consumed	g	-	f_{sd}	
Water vaporized from all pots	g	-	W _{cv}	-	W _{hv}	Water vaporized	g	-	W _{sv}	
Effective mass of water boiled	g	-	W _{cr}	-	W _{hr}	Water remaining at end - Pot # 1	g	-	W _{sr}	
Time to boil Pot # 1	min	-	Δt_c	-	Δt_h	Time of simmer (should be ~45 minutes)	min	-	Δt _s	
Temp-corr time to boil Pot # 1	min	-	Δt_{c}^{T}	-	Δt_{h}^{T}	Thermal efficiency	%		h _s	
Thermal efficiency	%		h _c		h _h	Burning rate	g/min	-	r _{sb}	
Burning rate	g/min	-	r _{cb}	-	r _{hb}	Specific fuel consumption	g/liter	-	SCs	
Specific fuel consumption	g/liter	-	SCc	-	SCh	Firepower	watts	-	FPs	
Temp-corr sp consumption	g/liter	-	SC ^T c	-	SC^{T}_{h}	Turn down ratio		-	TDR	
Firepower	watts	-	FP_{c}	-	FP_{h}					
HOT START, COLD START, AN	D SIMME	R TESTS								

Comments on the High Power - Cold Start Test:	
	-
	-
Comments on the High Power - Hot Start Test:	٦
	٦
Comments on the Low Power/Simmer Test:	
COMMENTS	

Results of three water boiling tests - all cells are linked to data worksheets, no entries are required

Stove type/model

Location

Wood species (specify if different for each test)

Average Hardwood

Wind conditions (specify if different for each test)

(Select from list)

1. HIGH POWER TEST (COLD START)	units	Test 1	Test 2	Test 3	Average	St Dev
Time to boil Pot # 1	min	29	-	-	29.2	-
Temp-corrected time to boil Pot # 1	min	27	-	-	27.3	-
Burning rate	g/min	24	-	-	24.0	-
Thermal efficiency	%	28%	0%	0%	28%	0%
Specific fuel consumption	g/liter	87	-	-	86.5	-
Temp-corrected specific consumption	g/liter	81	-	-	81.1	-
Firepower	watts	7,376	-	-	7376	-
2. HIGH POWER TEST (HOT START)	units	Test 1	Test 2	Test 3	Average	St Dev
Time to boil Pot # 1	min	-	-	-	0.0	-
Temp-corrected time to boil Pot # 1	min	-	-	-	0.0	-
Burning rate	g/min	-	-	-	0.0	-
Thermal efficiency	%	0%	0%	0%	0%	09
Specific fuel consumption	g/liter	-	-	-	0.0	-
Temp-corrected specific consumption	g/liter	-	-	-	0.0	-
Firepower	watts	-	-	-	0	-
3. LOW POWER (SIMMER)	units	Test 1	Test 2	Test 3	Average	St Dev
Burning rate	g/min	-	-	-	0.0	-
Thermal efficiency	%	0%	0%	0%	0%	09
Specific fuel consumption	g/liter	-	-	-	0.0	-
Firepower	watts	-	-	-	0	-
Turn down ratio		-	-	-	0.00	-

Use this worksheet if you are determining fuel moisture with the Delmhorst J-2000 or similar handheld moisture meter. If you are using another means to determine fuel moisture, ignore this worksheet and enter the moisture in the proper space on each Test's data form.

To find fuel moisture, take 3 pieces of fuel at random from the stock used for each test and measure each in three places along its length. Enter the results in the spaces below. The worksheet will authmatically calculate average moisture content on a dry and wet basis.

wind conditions

 $\begin{array}{c} 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\\ 59\\ 60\\ 162\\ 63\\ 66\\ 67\\ 68\\ 9\\ 70\\ 72\\ 73\\ 74\\ 75\\ \end{array}$ 77 78 79 80 81 82 83 84 85 86

Tree species

(Select from list) LPG Kerosene Charcoal Coal Crop residues Dung Average Hardwood Average Softwood (Conifer) Abies Balsamea (Balsam Fir) Acacia Auriculiformis (Ear-Leaf Acacia, Ear-Pod Wattle) Acacia Decurrens (King Wattle, Green Wattle, Sydney Black Wattle) Acacia Farnesiana (Sweet Acacia, Sweet Wattle) Acacia Leucophloea (Kikar, Kuteeera Gum) Acacia Mearnsi (Black Wattle) Acacia Nilotica (Egyptian Thorn, Babul (India), Babar (Pakistan)) Acacia Tortilis (Umbrella Thorn) Acer Rubrum (Red Maple) Albizia Falcataria (Batai, Malucca Albizia, ,Placata) Albizia Lebbek (Lebbek, East Indian Walnut Tree) Albizia Procera (Albicia, Silver Bark Rain Tree) Alnus Nepalensis (Nepal Alder) Alnus Rubra (Red Alder) Alnus Rubra (Red Alder) Alstonia Macrophylla (Devil Tree) Anogeissus Latifolia (Axle-Wood Tree, Dhausa (Hindi)) Anthocephalus Cadamba (Labula (Indonesia)) Antidesma Ghaessimbilla Avicennia Officinalis (Mangrove, Api-Api Sudu (Philippines)) Balanites Aegyptiaca (Desert Date, Thorn Tree, Soapberry Tree) Bruguiera Gymnorrhiza (Black Mangrove, Large-Leafed Mangrove) Bruguiera Parviflora (Thua Shale, Slender-Fruited Orange Mangrove) Bruguiera Sexangula (Orange Mangrove) Calliandra Calothyrsus (Calliandra) Carya Spp (Hickory) Cassia Fistula (Cassia Stick Tree, Guayaba Cimarrona, Canafistula, Golden Shower, Indian Laburnum, Baton Ca Cassia Siamea (Siamese Cassia) Casuarina Equistofolia (Casuarina, She-Oak, Whistling Pine) Ceriops Tagal (Tagal Mangrove, Kandal) Cocus Nucifera (Coconut Palm) Cordia Dichotoma (Anunang (Philippines), Bird Lime Tree) Dalbergia Latifolia (East Indian Rosewood, Malabar Rosewood, Sitsal, Beete, Shisham) Dalbergia Sissoo (Sissoo, Shisham, Karra, Shewa) Derris Indica (India: Pongam, Ponga, Kona, Kanji, Karanja, Karanda; English: Indian Beech) Diospyros Philippinensis (Kamagong (Philippines)) Diospyros Philosanthera (Bolong-Eta (Philippines)) Emblica Ofiicinalis (Madre De Cacao, Kakauati (Philippines), Mexican Lilac, Madera Negra) Eucalyptus Camaldulensis (Red River Gum, Red Gum) Eucalyptus Deglupta (Rainbow Gum Tree)

Eucalyptus Globulus (Southern Blue Gum, Fever Tree) Eucalyptus Grandis (Rose Gum, Grand Eucalyptus) Fagus Spp (Beech) Gigantochloa Apus (Pring Tali, Tabasheer Bamboo) Gliricidia Sepium Gmelina Arborea (Gmelina, Gumhar (India)) Lagerstroemia Speciosa (Queen's Crape Myrtle, Giant Crape Myrtle) Leucaena Leucocephala (Leucaena, Ipil-Ipil (Philippines), Uaxin (Latin America), Lamtora (Indonesia), Lead Tree) Melia Azedarach (China Berry, Persian Lilac, Bead Tree, Cape Lilac) Pinus Elliotii (Southern Pine) Pinus Ponderosa (Ponderosa Pine) Pithecellobium Dulce (Quamachil, Guamuchil (Mexico), Manila Tamarind) Platanus Occidentalis (Sycamore) Populus Euphratica (Euphrates Poplar, Saf-Saf, Indian Poplar) Populus Trichocarpa (Black Cottonwood) Prosopis Cineraria (Jand, Khejri (India)) Prosopis Pallida (Kiawe) Pseudotsuga Menziesii (Douglas Fir) Psidium Guajava (Guava, Guavaba) Quercus Bicolor (White Oak) Quercus Rubra (Red Oak) Rhizophera Spp (Mangrove Spp (Also Avicennia Spp)) Sapium Sebiferum (Chinese Tallow Tree, Soap Tree, Tarchabi (Pahari) Shishum (India)) Schima Noronhae Schleichera Oleosa (Kosambi (Indonesia), Lac Tree) Sesbania Grandiflora (Scarlet Wisteria Tree, Agati, Corkwood Tree, West Indian Pea) Swietenia Macrophylla (Brazilian Mahogany, Caoba, Honduras Mahogany, Big Leaf Mahogany) Syzygium Cumini (Jambolan, Java Plum) Thuja Plicata (Western Red Cedar) Trema Spp Tsuga Canadensis (Eastern Hemlock) Tsuga Heterophylla (Western Hemlock) Ulmus Spp (Elm) Xylocarpus Granatum (Cannonball Mangrove, Cedar Mangrove) Xylocarpus Moluccensis (Cedar Mangrove) Zizyphus Mauritania (Indian Jujube, Indian Plum) Zizyphus Talanai

> Statistiu Minimum Maximum standard Deviation Average Percentiles: 25th 50th 75th

NAS (1980). Firewood Crops. Washington DC, National Academy of Sciences. Cheremisinoff, N. (1980). Properties of Wood. Wood for Energy Production. Ann Arbor, MI, Ann Arbor Science: 31-43.

Harker, A. P., A. Sandels, et al. (1982). Calorific values for wood and bark and a bibliography for fuelwood. London, Tropical Products Institute: 20.

FAO (1993). Energy and Environment Basics. Bangkok, Regional Wood Energy Development Program (RWEDP): 85.

kJ/kg		Fuel	Calorific value (MJ/kg)	
-	Source	Kerosene		43.3
				43.6
48,000				43.1
43,300		LPG		49
29,400				47.1
24,700				45.8
14,700				50.1
13,600		Natural gas		51.3
19,734	3			
20,817	3	Biogas		17.7
18,916	2			
20,370	1			
18,700	4	Fuel	Calorific value (MJ/kg)	
19,200	4	Charcoal		25.7 @ 1.7 % MCwet
21,800	4			27.6 @ ~5 % MCwet
19,530	1			29.2 @ ~5 % MCwet
20,475	1			30 @ ~5 % MCwet
18,480	1			30.7 @ ~5 % MCwet
18,545	2			31.1 @ ~5 % MCwet
18,100	4			31.5 @ ~5 % MCwet
21,840	1	Maize stalks		16.1 @ 9.1 % MCwet
19,700	4			15.4 @ 5.0 % MCwet
17,150	4	Wheat stalks		14 @ 7.3 % MCwet
19,320	1			15.4 @ 5.0 % MCwet
18,545	2	Rice stalks		13 @ 8.8 % MCwet
19,200	4	_		14.2 @ 5.0 % MCwet
20,580	1	Dung		11.8 @ 7.3 % MCwet
19,350	4	0		15.4 @ 5.0 % MCwet
19,100	4	Coal		оо г
18,500	4	China		22.5
19,320 20,400	1	China China (washed)		27.3 @ 2.1 % MCwet 30.1 @ 4.7 % MCwet
20,400	4 4	US		26.2
19,400	4	India		18.4
19,400	4	South Africa		23.5
18,684	2	Ooutin Amea		20.0
18,400	4			
18,800	4			
20,790	1			
19,600	4			
19,000	4			
18,400	4			
19,800	4			
21,210	1			
19,320	1			
18,600	4			
18,100	4			
21,840	1			
20,160	1			
18,700	4			
-,•	-			

<u>cal Summary</u> 15,400 22,680 1,281 19,483 18,684 19,320	20,160 19,750 18,916 18,400 20,580 20,160 19,300 18,480 21,460 19,961 18,684 22,680 18,545 21,057 20,425 21,000 19,750 20,634 20,126 18,916 18,684 17,430 17,663 20,000 18,700 19,300 20,700 20,160 22,514 18,900 19,520 19,520 19,520 19,520 19,520 19,520 18,963 16,300 15,400 20,580 18,300	1 4 2 4 1 1 4 1 1 2 2 1 2 1 2 1 4 2 1 2 2 1 1 4 4 4 4
20,370	22,680 1,281 19,483 18,684 19,320	

Source Zhang et al., 2000 IEA, 2005 Smith et al, 2001 Zhang et al., 2000 IEA, 2005 Smith et al, 2001 US DoE Zhang et al., 2000 Smith et al, 2001 Source Smith et al, 2001 Pennise et al. 2002 Zhang et al., 2000 **RWEDP**, 1993 Zhang et al., 2000 RWEDP, 1993 Smith et al, 2001 RWEDP, 1993 Smith et al, 2001 RWEDP, 1993 IEA, 2005 Zhang et al., 2000 Zhang et al., 2000 IEA, 2005 IEA, 2005

IEA, 2005