|
|
(6 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
| | | |
− | [[Portal:Hydro|► Back to Hydro Portal]] | + | [[Portal:Hydro|► Back to Hydro Portal]]<br/> |
| | | |
| = Overview<br/> = | | = Overview<br/> = |
Line 7: |
Line 7: |
| | | |
| <br/> | | <br/> |
| + | |
| + | {{#widget:YouTube|id=q8HmRLCgDAI}}<br/> |
| | | |
| = Principle of Hydro Power = | | = Principle of Hydro Power = |
Line 49: |
Line 51: |
| == Methods of Head and Flow Measurement without Sophisticated Tools<br/> == | | == Methods of Head and Flow Measurement without Sophisticated Tools<br/> == |
| | | |
− | *'''<u><span style="font-weight: bold">E</span>stimation of height</u>''' can be done easiest if there is a steep slope (waterfall) by rope. | + | *'''<u><span style="font-weight: bold;">E</span>stimation of height</u>''' can be done easiest if there is a steep slope (waterfall) by rope. |
| | | |
| <br/> | | <br/> |
Line 63: |
Line 65: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" border="0" align="center" style="width: 500px" | + | {| align="center" style="width: 500px;" border="0" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Height measure by level.jpg|thumb|left|200px|Height measure by level.jpg]]<br/> | | | [[File:Height measure by level.jpg|thumb|left|200px|Height measure by level.jpg]]<br/> |
Line 97: |
Line 99: |
| </ul> | | </ul> |
| </ul> | | </ul> |
| + | |
| + | </ul> |
| + | |
| + | </ul> |
| + | |
| + | </ul> |
| + | |
| + | </ul> |
| | | |
| *Pipeline (penstock) length | | *Pipeline (penstock) length |
Line 146: |
Line 156: |
| <u>Small hydro can be further subdivided into mini, micro and pico:</u> | | <u>Small hydro can be further subdivided into mini, micro and pico:</u> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="1" class="FCK__ShowTableBorders" style="width: 100%" | + | {| class="FCK__ShowTableBorders" style="width: 100%;" border="1" cellspacing="1" cellpadding="1" |
| |- | | |- |
| | | | | |
| *'''Mini (MH)'''<br/> | | *'''Mini (MH)'''<br/> |
| | | |
− | | style="width: 70px" | < 1 MW | + | | style="width: 70px;" | < 1 MW |
− | | style="width: 155px" | grid connected | + | | style="width: 155px;" | grid connected |
| | special know how required | | | special know how required |
| |- | | |- |
Line 158: |
Line 168: |
| *'''Micro''' | | *'''Micro''' |
| | | |
− | | style="width: 70px" | < 100 kW | + | | style="width: 70px;" | < 100 kW |
− | | style="width: 155px" | partially grid con.<br/> | + | | style="width: 155px;" | partially grid con.<br/> |
| | professional know how required | | | professional know how required |
| |- | | |- |
Line 165: |
Line 175: |
| *'''Pico (PH)''' | | *'''Pico (PH)''' |
| | | |
− | | style="width: 70px" | < 10 kW | + | | style="width: 70px;" | < 10 kW |
− | | style="width: 155px" | island grids | + | | style="width: 155px;" | island grids |
| | small series units produced locally; professional equipment available | | | small series units produced locally; professional equipment available |
| |- | | |- |
Line 172: |
Line 182: |
| *'''Family (FH)''' | | *'''Family (FH)''' |
| | | |
− | | style="width: 70px" | < ~1 kW | + | | style="width: 70px;" | < ~1 kW |
− | | style="width: 155px" | single households/clusters | + | | style="width: 155px;" | single households/clusters |
| | often locally handmade solutions; professional equipment available | | | often locally handmade solutions; professional equipment available |
| |} | | |} |
Line 214: |
Line 224: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" border="1" style="width: 100%" | + | {| style="width: 100%;" border="1" cellspacing="1" cellpadding="5" |
| |- | | |- |
− | | style="background-color: rgb(153, 153, 153)" | | + | | style="background-color: rgb(153, 153, 153);" | |
| '''General concepts like ‘small’ or ‘large hydro’ are not technically or scientifically rigorous indicators of impacts, economics or characteristics. Hydropower projects cover a continuum in scale, and it may be more useful to evaluate a hydropower project on its sustainability or economic performance, thus setting out more realistic indicators'''<ref>IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Chapter 5 Hydropower (2011). Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref>.<br/> | | '''General concepts like ‘small’ or ‘large hydro’ are not technically or scientifically rigorous indicators of impacts, economics or characteristics. Hydropower projects cover a continuum in scale, and it may be more useful to evaluate a hydropower project on its sustainability or economic performance, thus setting out more realistic indicators'''<ref>IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Chapter 5 Hydropower (2011). Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref>.<br/> |
| | | |
Line 229: |
Line 239: |
| <u>Hydropower plants can be classified in three categories according to operation and type of flow:</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>Hydropower plants can be classified in three categories according to operation and type of flow:</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | #'''Run-of-river (RoR),'''<br/> | + | #'''Run-of-river (RoR), '''<br/>Small and micro hydropower utilizes water that runs of a river and avoids big environmental impacts. |
| #'''Storage (reservoir)''' | | #'''Storage (reservoir)''' |
− | #'''Pumped storage hydro power plants (HPPs)'''<br/> | + | #'''Pumped storage hydro power plants (HPPs)''' work as energy buffer and do not produce net energy. |
| + | #'''In-stream Hydropower Schemes '''use a rivers natural elevation drop without to dam a river. |
| | | |
− | In addition, there is a fourth category called in-stream technology, which is a young and less-developed technology.<br/>
| + | <br/>'''<u>'Run-of-River Hydropower' Plant (RoR)</u>'''<ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | <br/>
| + | {| align="left" style="width: 100%;" cellspacing="1" cellpadding="1" |
− | | + | |
− | Storage HPPs require high dams and big storage areas to be flooded. Such is usually the case in big infrastructure projects including the known environmental impacts. Small and micro hydropower usually avoids those but utilizes water that runs of a river.<br/>
| + | |
− | | + | |
− | Pumped storage HPPs work as energy buffer and do not produce net energy.
| + | |
− | | + | |
− | <br/>
| + | |
− | | + | |
− | '''<u>'Run-of-River Hydropower' Plant (RoR)</u>'''<ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref>
| + | |
− | | + | |
− | {| cellspacing="1" cellpadding="1" align="left" style="width: 100%" | + | |
| |- | | |- |
− | | style="width: 223px" | [[File:Run-of-River Hydropower Plant.JPG|thumb|left|209px|Run-of-River Hydropower Plant]]<br/> | + | | style="width: 248px;" | [[File:Run-of-River Hydropower Plant.JPG|thumb|left|x199px|Run-of-River Hydropower Plant]]<br/> |
− | | style="width: 543px" | | + | | style="width: 407px;" | |
− | *RoR plant mainly produce energy from the available flow of the river, taking advantage of the natural elevation drop of a river<br/> | + | *RoR plant produce energy from the available flow and the natural elevation drop of a river<br/> |
− | *It is suitable for streams or rivers that have a minimum flow all year round or those that are regulated by a larger dam and reservoir upstream<br/> | + | *It is suitable for rivers that have at least a minimum flow all year round.<br/> |
− | *Water is diverted into a penstock and channeled to the turbine and then returned to the river<br/> | + | *The water to powers th turbine is diverted and channeled into a penstock and then returned to the river |
− | *RoR plants have either no storage or short-term storage, allowing for some adaptations to the demand profile | + | *RoR plants usually have no or only small storage, allowing for some adaptations to the demand profile. |
− | *Such reservoirs are usually smaller than those of reservoir hydro power plants but nevertheless dams can be ten to twenty meters high and can have gates to allow for water storage | + | *As bigger the storage capacity is as higher the environmental impacts are |
| *Power generation is dictated by local river flow conditions and thus depends on precipitation and runoff and may have substantial daily, monthly or seasonal variations | | *Power generation is dictated by local river flow conditions and thus depends on precipitation and runoff and may have substantial daily, monthly or seasonal variations |
− | *Environmental impacts are generally lower than for similar-sized storage hydropower plants
| |
| | | |
| |} | | |} |
Line 261: |
Line 261: |
| <br/><br/><br/><br/><br/> | | <br/><br/><br/><br/><br/> |
| | | |
− | <br/><br/><br/><br/><br/><br/><br/><br/> | + | <br/><br/><br/><br/><br/><br/><br/> |
− | | + | |
− | <br/> | + | |
| | | |
| <u>'''Hydropower Plant with Reservoir'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''Hydropower Plant with Reservoir'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" style="width: 100%" | + | {| style="width: 100%;" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | [[File:Hydropower Plant with Reservoir.JPG|thumb|left|215px|Hydropower Plant with reservoir]] | + | | style="width: 222px;" | [[File:Hydropower Plant with Reservoir.JPG|thumb|left|x159px|Hydropower Plant with reservoir]] |
− | | | + | | style="width: 433px;" | |
| *Hydropower projects with a reservoir (storage hydropower) store water behind a dam for times when river flow is low<br/> | | *Hydropower projects with a reservoir (storage hydropower) store water behind a dam for times when river flow is low<br/> |
− | *<span style="line-height: 1.5em">Therefore power generation is more stable and less variable than for RoR plants</span> | + | *<span style="line-height: 1.5em;">Therefore power generation is more stable and less variable than for RoR plants</span> |
| *The generating stations are located at the dam toe or further downstream, connected to the reservoir through tunnels or pipelines | | *The generating stations are located at the dam toe or further downstream, connected to the reservoir through tunnels or pipelines |
| *Type and design of reservoirs are decided by the landscape and in many parts of the world are inundated river valleys where the reservoir is an artificial lake | | *Type and design of reservoirs are decided by the landscape and in many parts of the world are inundated river valleys where the reservoir is an artificial lake |
− | *In geographies with mountain plateaus, high-altitude lakes make up another kind of reservoir
| + | *Reservoir hydropower plants can have major environmental and social impacts due to the [[Using Hydro Power Plants for Flood Prevention|flooding of land for the reservoir]]<br/> |
− | *Reservoir hydropower plants can have major environmental and social impacts due to the flooding of land for the reservoir<br/> | + | |
| | | |
| |} | | |} |
Line 282: |
Line 279: |
| <u>'''Pump Storage Hydropower Plant'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''Pump Storage Hydropower Plant'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="0" style="width: 100%" | + | {| style="width: 100%;" border="0" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | [[File:Pump Storage Project.JPG|thumb|left|212px|Pump Storage Project.JPG]] | + | | [[File:Pump Storage Project.JPG|thumb|left|x188px|Pump Storage Project.JPG]] |
| | | | | |
| *Pumped storage plants are not energy sources, instead they are storage devices | | *Pumped storage plants are not energy sources, instead they are storage devices |
Line 295: |
Line 292: |
| <u>'''In-stream Hydropower Scheme'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> | | <u>'''In-stream Hydropower Scheme'''</u><ref name="http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.">http://srren.ipcc-wg3.de/report - Prepared by Working Group III of the Intergovernmental Panel on Climate Change [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp.</ref> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="0" style="width: 100%" | + | {| style="width: 100%;" border="0" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | | style="width: 206px" | [[File:In-stream Hydropower Scheme.PNG|thumb|left|212px|n-storgare hydropower scheme]] | + | | style="width: 206px;" | |
− | | style="width: 547px" | | + | [[File:In-stream Hydropower Scheme.PNG|thumb|left|x134px|n-storgare hydropower scheme]]non typical installation of an in-stream HPP |
− | *To optimize existing facilities like weirs, barrages, canals or falls, small turbines or hydrokinetic turbines can be installed | + | |
− | *Usually the turbine is mounted on the river bottom, an existing river structure or on a floating structure | + | | style="width: 547px;" | |
− | *These low-impact turbines act much like an underwater turbine and use the river current for power generation
| + | *Basically in-stream Hydropower functions like a RoR scheme, but the turbine is mostly built within the dam in the riverbed. Usually the river flow is not diverted. |
− | *Basically they function like a RoR scheme
| + | *To optimize existing weirs, barrages, canals or falls, small turbines or hydrokinetic turbines can be installed |
− | *The technologies may operate in unidirectional or bi-directional (tidal) river flows and do not divert river flow or use dams to retain water or create an artificial head
| + | *At rivers close to the sea the technologies may operate bi-directional (tidal) |
− | *As a new technology, in-stream HP is still relatively expensive as compared to other renewable alternatives and requires further study concerning potential environmental impacts and maintenance concerns
| + | |
| | | |
| |} | | |} |
| | | |
− | <br/>
| + | ► Text and Figures of this chapter are originally mainly taken from the Chapter 5 of the [http://srren.ipcc-wg3.de/report IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (2011)]. |
− | | + | |
− | ► Text and Figures of this chapter are mainly taken from the Chapter 5 of the [http://srren.ipcc-wg3.de/report IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (2011)]. | + | |
| | | |
| [[Hydro Power Basics#toc|►Go to Top]] | | [[Hydro Power Basics#toc|►Go to Top]] |
− |
| |
− | <br/>
| |
| | | |
| <br/> | | <br/> |
Line 328: |
Line 320: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="1" border="1" align="center" style="height: 534px; width: 100%" | + | {| align="center" style="width: 100%; height: 534px;" border="1" cellspacing="1" cellpadding="1" |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | Country<ref name="http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159">http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159</ref> | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" scope="row" | Country<ref name="http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159">http://www.hydropower-dams.com/world-atlas-industry-guide.php?c_id=159</ref> |
− | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | Installed Hydropower Capacity in MW | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" | Installed Hydropower Capacity in MW |
− | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204)" | % of total electricity generation | + | ! style="width: 147px; text-align: left; background-color: rgb(204, 204, 204);" | % of total electricity generation |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Burundi | + | ! style="width: 147px; text-align: left;" scope="row" | Burundi |
− | | style="width: 237px; text-align: center" | 50.5 | + | | style="width: 237px; text-align: center;" | 50.5 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Bhutan | + | ! style="width: 147px; text-align: left;" scope="row" | Bhutan |
− | | style="width: 237px; text-align: center" | 1488 | + | | style="width: 237px; text-align: center;" | 1488 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Congo, Dem. Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Congo, Dem. Rep. |
− | | style="width: 237px; text-align: center" | 2442 | + | | style="width: 237px; text-align: center;" | 2442 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Lesotho | + | ! style="width: 147px; text-align: left;" scope="row" | Lesotho |
− | | style="width: 237px; text-align: center" | 76 | + | | style="width: 237px; text-align: center;" | 76 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Namibia | + | ! style="width: 147px; text-align: left;" scope="row" | Namibia |
− | | style="width: 237px; text-align: center" | 249 | + | | style="width: 237px; text-align: center;" | 249 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Paraguay | + | ! style="width: 147px; text-align: left;" scope="row" | Paraguay |
− | | style="width: 237px; text-align: center" | 68000 | + | | style="width: 237px; text-align: center;" | 68000 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Mozambique | + | ! style="width: 147px; text-align: left;" scope="row" | Mozambique |
− | | style="width: 237px; text-align: center" | 2179 | + | | style="width: 237px; text-align: center;" | 2179 |
− | | style="width: 230px; text-align: center" | 100 | + | | style="width: 230px; text-align: center;" | 100 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Zambia | + | ! style="width: 147px; text-align: left;" scope="row" | Zambia |
− | | style="width: 237px; text-align: center" | 1812 | + | | style="width: 237px; text-align: center;" | 1812 |
− | | style="width: 230px; text-align: center" | >99 | + | | style="width: 230px; text-align: center;" | >99 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Norway | + | ! style="width: 147px; text-align: left;" scope="row" | Norway |
− | | style="width: 237px; text-align: center" | 29636 | + | | style="width: 237px; text-align: center;" | 29636 |
− | | style="width: 230px; text-align: center" | 99 | + | | style="width: 230px; text-align: center;" | 99 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Albania | + | ! style="width: 147px; text-align: left;" scope="row" | Albania |
− | | style="width: 237px; text-align: center" | 1450 | + | | style="width: 237px; text-align: center;" | 1450 |
− | | style="width: 230px; text-align: center" | 98 | + | | style="width: 230px; text-align: center;" | 98 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Lao PDR | + | ! style="width: 147px; text-align: left;" scope="row" | Lao PDR |
− | | style="width: 237px; text-align: center" | 2000 | + | | style="width: 237px; text-align: center;" | 2000 |
− | | style="width: 230px; text-align: center" | 98 | + | | style="width: 230px; text-align: center;" | 98 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Tajikistan | + | ! style="width: 147px; text-align: left;" scope="row" | Tajikistan |
− | | style="width: 237px; text-align: center" | 5200 | + | | style="width: 237px; text-align: center;" | 5200 |
− | | style="width: 230px; text-align: center" | 96 | + | | style="width: 230px; text-align: center;" | 96 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Ethiopia | + | ! style="width: 147px; text-align: left;" scope="row" | Ethiopia |
− | | style="width: 237px; text-align: center" | 784 | + | | style="width: 237px; text-align: center;" | 784 |
− | | style="width: 230px; text-align: center" | >95 | + | | style="width: 230px; text-align: center;" | >95 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Malawi | + | ! style="width: 147px; text-align: left;" scope="row" | Malawi |
− | | style="width: 237px; text-align: center" | 290 | + | | style="width: 237px; text-align: center;" | 290 |
− | | style="width: 230px; text-align: center" | 95 | + | | style="width: 230px; text-align: center;" | 95 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Cameroon | + | ! style="width: 147px; text-align: left;" scope="row" | Cameroon |
− | | style="width: 237px; text-align: center" | 720 | + | | style="width: 237px; text-align: center;" | 720 |
− | | style="width: 230px; text-align: center" | 94 | + | | style="width: 230px; text-align: center;" | 94 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Nepal | + | ! style="width: 147px; text-align: left;" scope="row" | Nepal |
− | | style="width: 237px; text-align: center" | 660 | + | | style="width: 237px; text-align: center;" | 660 |
− | | style="width: 230px; text-align: center" | 92 | + | | style="width: 230px; text-align: center;" | 92 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Kyrgyz Republic | + | ! style="width: 147px; text-align: left;" scope="row" | Kyrgyz Republic |
− | | style="width: 237px; text-align: center" | 2910 | + | | style="width: 237px; text-align: center;" | 2910 |
− | | style="width: 230px; text-align: center" | 91 | + | | style="width: 230px; text-align: center;" | 91 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Congo, Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Congo, Rep. |
− | | style="width: 237px; text-align: center" | 119 | + | | style="width: 237px; text-align: center;" | 119 |
− | | style="width: 230px; text-align: center" | >90 | + | | style="width: 230px; text-align: center;" | >90 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Georgia | + | ! style="width: 147px; text-align: left;" scope="row" | Georgia |
− | | style="width: 237px; text-align: center" | 2850 | + | | style="width: 237px; text-align: center;" | 2850 |
− | | style="width: 230px; text-align: center" | 86 | + | | style="width: 230px; text-align: center;" | 86 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Brazil | + | ! style="width: 147px; text-align: left;" scope="row" | Brazil |
− | | style="width: 237px; text-align: center" | 84000 | + | | style="width: 237px; text-align: center;" | 84000 |
− | | style="width: 230px; text-align: center" | 84 | + | | style="width: 230px; text-align: center;" | 84 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Swaziland | + | ! style="width: 147px; text-align: left;" scope="row" | Swaziland |
− | | style="width: 237px; text-align: center" | 42 | + | | style="width: 237px; text-align: center;" | 42 |
− | | style="width: 230px; text-align: center" | 82 | + | | style="width: 230px; text-align: center;" | 82 |
| |- | | |- |
− | ! scope="row" style="width: 147px; text-align: left" | Central afric. Rep. | + | ! style="width: 147px; text-align: left;" scope="row" | Central afric. Rep. |
− | | style="width: 237px; text-align: center" | 24.6 | + | | style="width: 237px; text-align: center;" | 24.6 |
− | | style="width: 230px; text-align: center" | 80 | + | | style="width: 230px; text-align: center;" | 80 |
| |} | | |} |
| | | |
Line 482: |
Line 474: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" align="center" style="width: 500px" | + | {| align="center" style="width: 500px;" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Forbay trashrack pennstock.jpg|thumb|left|300px|Forbay trashrack pennstock.jpg]] | | | [[File:Forbay trashrack pennstock.jpg|thumb|left|300px|Forbay trashrack pennstock.jpg]] |
Line 490: |
Line 482: |
| <br/> | | <br/> |
| | | |
− | {| cellspacing="1" cellpadding="5" align="center" style="width: 501px" | + | {| align="center" style="width: 501px;" cellspacing="1" cellpadding="5" |
| |- | | |- |
| | [[File:Management-Poster.jpg|thumb|left|200px|alt=Management-Poster.jpg]]<br/><br/> | | | [[File:Management-Poster.jpg|thumb|left|200px|alt=Management-Poster.jpg]]<br/><br/> |
− | | style="width: 237px" | [[File:Canal-participation-2.jpg|thumb|left|200px|Canal-participation-2.jpg]] | + | | style="width: 237px;" | [[File:Canal-participation-2.jpg|thumb|left|200px|Canal-participation-2.jpg]] |
| |} | | |} |
| | | |
Line 500: |
Line 492: |
| <br/> | | <br/> |
| <div> | | <div> |
− | *<span style="line-height: 1.5em; font-size: 0.85em">For an overview or possible impacts on a mhp's success, check out the </span>'''[[:File:Mhp-tree-3.jpg|mhp-tree-diagram]]''' | + | *<span style="line-height: 1.5em; font-size: 0.85em;">For an overview or possible impacts on a mhp's success, check out the </span>'''[[:File:Mhp-tree-3.jpg|mhp-tree-diagram]]''' |
| | | |
| [[Hydro Power Basics#toc|►Go to Top]] | | [[Hydro Power Basics#toc|►Go to Top]] |
Line 621: |
Line 613: |
| *[http://microhydropower.net/ Micro Hydropower] | | *[http://microhydropower.net/ Micro Hydropower] |
| *[http://practicalaction.org/hydro-power-answers Practical Action: Hydro Power Answers] | | *[http://practicalaction.org/hydro-power-answers Practical Action: Hydro Power Answers] |
| + | *[[Using Hydro Power Plants for Flood Prevention|Using Hydro Power Plants for Flood Prevention]] |
| *For more links on MHP, click [[Micro Hydro Power (MHP) - Further Links|here]]. | | *For more links on MHP, click [[Micro Hydro Power (MHP) - Further Links|here]]. |
− |
| |
− | <br/>
| |
| | | |
| <br/> | | <br/> |
Line 631: |
Line 622: |
| <references /> | | <references /> |
| | | |
− | [[Category:Productive_Use]]
| |
| [[Category:Large_Hydro]] | | [[Category:Large_Hydro]] |
| [[Category:Hydro]] | | [[Category:Hydro]] |
A mass of water moving down a height difference contains energy which can be harvested using some waterwheel or turbine. The moving water drives the waterwheel and this rotation either drives machinery directly (e.g. mill, pump, hammer, thresher, ...) or is coupled with a generator which produces electric power.
Hydro power is probably the first form of automated power production which is not human / animal driven. Moving a grind stone for milling first, developed into the driving of an electrical generator. Next to steam it was for long the main power source for electricity.Its continual availability does not require any power storage (unlike wind / solar power). It is mainly mechanical hardware. This makes it relative easy to understand and repair-/maintainable. In smaller units its environmental impact becomes neglect-able (see: environmental impact assessment and pros and cons of micro hydropower).
These specific conditions limit generalising and standartisation of "how to install hydropower plants". Choosing the right location and planning requires some specific knowledge. With knowledge of water flow and height difference the potential power can be estimated.
Wrong data occurs frequently. Confirmation of existing data is highly recommended!
By measuring total height step by step, it's crucial to do the bearing strictly horizontally. Ensure that by using a level or a water filled hose. Widely available are hoses and pressure gauges which allow the easiest method of height measurement. As longer the hose as less steps have to be taken to measure the total head.
Hydropower installations can be classified by size of power output, although the power output is only an approximate diversion between different classes. There is no international consensus for setting the size threshold between small and large hydropower.
The German Federal Ministry for Environment, Nature Conservation and Nuclear Safety mentioned that a SHP is <1 MW, everything above is a large hydro electric plant and usually comes along with a large dam. The International Commission on Large Dams (ICOLD) defines a large dam as a dam with a height of 15 m or more from the foundation. If dams are between 5-15 m high and have a reservoir volume of more than 3 million m3, they are also classified as large dams. Using this definition, there are over 45 000 large dams around the world.
There is no binding definition how mini hydro power output is to be classified. Rules for communication avoiding misunderstandings: Generally the terms can be used "downwards compatible". Pico- is also Mini- but not visa versa. Specific terms (Pico, Family) should be used only if they are required to indicate specifics. The spectrum needs higher diversification as smaller it becomes as there are certain differences in technique, usage, applicability and the grade of of ability to replicate them.
Classification according to size has led to concepts such as ‘small hydro’ and ‘large hydro’, based on installed capacity measured in MW as the defining criterion. Defining hydropower by size is somewhat arbitrary, as there are no clear relationships between installed capacity and general properties of hydro power or its impacts. Hydro power comes in manifold project types (see Classification By Facility Type) and is a highly site-specific technology, where each project is a tailor-made outcome for a particular location within a given river basin to meet specific needs for energy and water management services.
However, larger facilities will tend to have lower costs on a USD/kW basis due to economies of scale, even if that tendency will only hold on average. Moreover, one large-scale hydropower project of 2,000 MW located in a remote area of one river basin might have fewer negative impacts than the cumulative impacts of four hundred 5 MW hydropower projects in many river basins (see also Negative Environmental Impacts
In 2010, in 161 countries hydropower is installed making up a worldwide installed hydro electric capacity of 926 GW which provide one-fifth of the world's electricity supply. Out of these 161 countries five countries make up more than the half of the world's hydropower production: China (~200 GW), Canada (74.4 GW), Brasil (84 GW), the USA (78.2 GW) and Russia (49.7 GW).
Often hydropower is the main or even only source for electricity production in developing countries.
Any other conventional energy source requires steady fuel. Such, like coal, gas or oil has to be purchased.
Hydropower offers a significant potential of renewable energy production. In 2009 electricity production from hydropower was about 16% of the global electricity production. The undeveloped capacity ranges from 30% in Europe up to 88% in Africa.
Small hydropower potential is given in hilly or mountainous regions, where rivers do not fall dry during the year.
Where gravity fed irrigation is practiced small and micro power plants find suiting conditions.
Mountainous regions often have bad infrastructure and are least to be connected to a electric grid. If there is water available it may be a suitable source for decentralised hydro power electrification. Such setups may even get support from governmental or major electricity supplier. The costs to connect remote areas are high, whereby the revenue, due to little amount of electricity utilised, is low.
Hydropower usually operates 24 h / day. Most mhp's are connected by a grid to their consumers. If a connection towards the national or main grid is available, electricity can be fed in there. Often micro or pico hydropower units are installed in remote areas. There they feed an isolated grid. In such grid the MHP is usually the only power source. The power produced has to be leveled equal with the power consumed (see controller).
Battery storage is no must like at solar or wind power projects. This is a big advantage as it reduces costs and maintenance significantly. Charging stations can nevertheless extend a mhp's effectiveness by utilising power in times of low demand (late night). Like this, even consumers which are too far from the station to be connected by transmission cable can be served via rechargeable batteries.
Small hydropower plants usually use (part-) river flow as driving force. Storage basins or even dams can buffer water. So demand peaks or (short) periods of water shortage can be bridged. As such infrastructures is costly and sophisticated, it's only used if there is a clear financial revenue; e.g. electricity supply for remote industries. Standard elements for mhp