Difference between revisions of "Solar Thermal Technologies"

From energypedia
***** (***** | *****)
***** (***** | *****)
Line 132: Line 132:
  
 
Gradually, our visit to the village ends and these three stories leave no doubt that hot water is possible, even in the most remote areas of Peru. Undoubtedly, the abundant sunshine that distinguishes the country, the “Inti”, which is the word for Sun used by the Incas, is a good ally for it. In addition, various organizations and microfinance institutions, such as Fondesurco are present to promote and provide alternative technologies that enable new ways to use the solar energy source, for example to get hot water, essential to our daily life, and even more so, in the country highlands.<br/><br/>
 
Gradually, our visit to the village ends and these three stories leave no doubt that hot water is possible, even in the most remote areas of Peru. Undoubtedly, the abundant sunshine that distinguishes the country, the “Inti”, which is the word for Sun used by the Incas, is a good ally for it. In addition, various organizations and microfinance institutions, such as Fondesurco are present to promote and provide alternative technologies that enable new ways to use the solar energy source, for example to get hot water, essential to our daily life, and even more so, in the country highlands.<br/><br/>
 +
  
 
=== Fondesurco, a microfinance institution ===
 
=== Fondesurco, a microfinance institution ===
Line 139: Line 140:
 
Rosa Luz Puma Aquino, Customers Service
 
Rosa Luz Puma Aquino, Customers Service
  
<ref>The information about Solar Water Heaters in Peru was originally published by EnDev Peru in the fitth edition (March 2014) of Amaray Magazine.fckLRfckLRMore information about Fondesurco microfinance can be found here: </ref><br/>
+
[[Category:Peru]]
 
 
 
[[Category:Solar_Heater]]
 
[[Category:Solar_Heater]]
[[Category:Peru]]
 
  
 
= Concentrating Solar Thermal Power =
 
= Concentrating Solar Thermal Power =

Revision as of 13:01, 26 May 2014

Overview

Solar thermal technologies involve harnessing solar energy for thermal energy (heat).

Solar thermal technologies comprise flat or parabollic collectors (low and medium temperatures and high temperature collectors) concentrating sunlight mainly using mirrors and lenses. Solar heating is the utilisation of solar energy to provide process heat, especially in crop drying, water heating, cooking or space heating and cooling. Advanced designs are also used to generate electricity.


Solar Water Heaters (SWH)

The Technology

Solar water heating (SWH) systems are typically composed of:

  • Solar thermal collectors(flat plate or evacuated tube)
  • Storage tank
  • Circulation loop.


SWH can be either active system or pasive systems:

  • Active systems which use pumps to circulate water or a heat transfer fluid. There are the two types of active solar water-heating systems:
  1. Direct-circulation systems use pumps to circulate pressurized potable water directly through the collectors. These systems are appropriate in areas that do not freeze for long periods and do not have hard or acidic water.
  2. Indirect-circulation systems pump heat-transfer fluids through collectors. Heat exchangers transfer the heat from the fluid to the potable water. Some indirect systems have "overheat protection," which is a means to protect the collector and the glycol fluid from becoming super-heated when the load is low and the intensity of incoming solar radiation is high.
  • Passive systems transfer and circulate heat naturally. Passive solar water heaters rely on gravity and the tendency for water to naturally circulate as it is heated. Because they contain no electrical components, passive systems are generally more reliable, easier to maintain, and possibly have a longer work life than active systems. The two common types of passive systems are:
  1. Integral-collector storage systems or batch systems consist of a tank that is directly heated by sunlight. These are the oldest and simplest solar water heater designs. They are good for households with significant daytime and evening hot-water needs; but they do not work well in households with predominantly morning draws because they lose most of the collected energy overnight. These solar collectors are suited for areas where temperatures rarely go below freezing.
  2. Thermosyphon systems are an economical and reliable choice. These systems rely on the natural convection of warm water rising to circulate water through the collectors and to a storage tank located above the collector. As water in the solar collector heats, it becomes lighter and rises naturally into the tank above. Meanwhile, the cooler water flows down the pipes to the bottom of the collector, enhancing the circulation. Indirect Thermosyphon systems use a glycol fluid in the collector loop as a heating medium.

To design, size and select a solar water heating system, the following data is required: daily hot water requirement (litres/day), average insolation (kWh/m2 day), water quality and storage requirements[1].


Flat Plate Collector

A flat plate is the most common type of solar thermal collector, and is usually used as a solar hot water panel to generate hot water. A weatherproofed, insulated box containing a black metal absorber sheet with built in pipes is placed in the path of sunlight. Solar energy heats up water in the pipes causing it to circulate through the system by natural convection. The water is usually passed to a storage tank located above the collector.

There are many flat-plate collector designs but generally all consist of:

  1. a flat-plate absorber, which intercepts and absorbs the solar energy,
  2. a transparent cover that allows solar energy to pass through but reduces heat loss from the absorber,
  3. a heat-transport fluid (air, antifreeze or water) flowing through tubes to remove heat from the absorber and
  4. a heat insulating backing.

One flat plate collector is designed to be evacuated, to prevent heat loss. The absorber may be made from one of a wide range of materials, including copper, stainless steel, galvanised steel, aluminium and plastics. When choosing an absorber material, it is important to ensure that it is compatible, from the point of view of corrosion, with the other components in the system and with the heat transfer fluid used. The absorber must also be able to withstand the highest temperature that it might reach on a sunny day when no fluid is flowing in the collector (known as the stagnation temperature).

The fluid passageways of the absorber may consist of tubes bonded to an absorbing plate, or may form an integral part of the absorber. Experience has shown that simple mechanical clamping of tubes to an absorber plate is likely to result in an absorber with a poor efficiency. A good thermal bond, such as a braze, weld or high temperature solder is required for tube and plate designs, in order to ensure good heat transfer from the absorbing surface into the fluid.

Matt black paints are commonly used for absorber surfaces because they are relatively cheap, simple to apply and may be easily repaired. Paints, however, have the disadvantage that they are usually strong emitters of thermal radiation (infrared), and at high temperature this results in significant heat losses from the front of the collector. Heat losses from the collector can be substantially reduced by the use of absorber coatings known as 'selective surfaces'. These surfaces may be applied by electroplating or by dipping a metal absorber in appropriate chemicals to produce a thin semi-conducting film over the surface. The thin film will be transparent to solar radiation but at the same time appear opaque to thermal radiation. However, these surfaces cannot be produced or applied easily.

Flat-plate collectors usually have a transparent cover made of glass or plastic. The cover is required to reduce heat losses from the front of the collector and to protect the absorber and the insulation from the weather. Most covers behave like a greenhouse. They permit solar radiation to pass into the collector, but they absorb the thermal radiation emitted by the hot absorber.

At night it is possible for the collector to lose heat by radiation and the circulation will be in the opposite direction, so the water will cool. This can be overcome by use of a suitable non-return valve. However, there is a danger with solar collectors when used under clear night conditions (e.g. in arid and semi arid regions) that they can actually freeze even when the ambient temperature is above freezing point. In such conditions it may be necessary to have a primary circuit through the collector filled with antifreeze and a separate indirect hot water cylinder where the water from the collector passes through a copper coil to heat the main water supply. This problem will only apply in certain desert regions in the cold season or at high altitudes in the tropics and sub-tropics.


Evacuated Tube Collector

Applications and Efficiency

SWHs are employed in residential, commercial, industrial and public buildings and in industrial processes (drying, pre-heating boiler feed water, cleaning, etc. - see examples for potential on solar thermal applications in industries in India) for the provision of hot water, heat and cooling.

The current commercial market for SWH in the region is predominantly households (high income), hospitals, commercial establishments and tourist facilities.


State of the art solar water heaters incorporate features such as selective surface absorbers, anti-reflective glazing, well-designed collector arrays, efficient storage systems achieving operation efficiencies of the order of 35 to 40%.
A 300-liter system typically suited for family of 4-6 persons will displace up to 1000 kWh of electricity annually[1].


Capability and Limitations

  • Water quality - Solar water heaters require clean, non-hard water for long term operation. Hard or dirty water leads to blockage and corrosion of pipes and storage tanks. Closed circuit systems are recommended where water is hard.
  • Installation, Commissioning and Maintenance - Improper installation and commissioning and maintenance of SWHs are the leading causes of system failures.
  • High cost of SWH is a major limitation in their uptake. Typical prices for small units range between US$ 1,500 (180 litres) to US$ 2,500 (300 litres)[1].


Costs

Low temperature flat-plate solar collectors typically cost 21 US $ per square metre (0,0021 US $ /cm²). Medium to high temperature collectors generally cost around 200 US $ per square metre. Flat plate collectors are sized at approximately 0,1 square metre (929 cm²) per gallon (3,79 l ) of daily hot water use or 245 cm² per l of hot water. A complete system installed costs around 14 US $/l or 2000 US $ per 150 l.


Maintenance

Solar thermal systems are relatively maintenance free and involve on an occasional basis the checking of the piping for leaks and the cleaning of the collectors. In some regions it may also be necessary to inspect the transfer fluid for freeze protection and to remove the build up of lime scale that chokes the collector and tank recirculating pipes over a period of time.



Project Example: Peru

The Colca River Hotel

It really is a great difficulty living in cold areas where you do not have hot water. I remember a trip where all our entire team passed many days without bathing. It was already difficult to bear the cold, but the thought of ice water on the body was impossible to bear.

In Peru, most of the people of the Andean highlands live this reality every day and the lack of hot water also reaches to travelers and tourists seeking for comfort and shelter in these remote locations, since in this area many communities are enthusiastic to exploit their potential touristic routes and offer their landscapes for backpacking guides.

Thus we arrive at Chivay, capital of Caylloma province in the department of Arequipa, today a well-known entry point to explore the heights and depths of the Colca Canyon and its surrounding towns. Chivay reaches 3,635 masl. and despite its sparse atmosphere, visitors are shown as a cozy and picturesque place surrounded by mountains and people in colorful traditional costumes.

Israel Huaraya and Ana Morón own and run the hotel in Chivay called Colca River. “We look for ways in which to better serve our guests. Here you can get very cold and people cannot clean themselves if there is no hot water, as it reaches zero degrees easily”, they tell us.

And as they dared to put the hotel name in English, did not hesitate to buy a solar water heater. "We saw the Fondesurco promotion and I opted for the largest heater, which is 650 liters. When we get large groups, we can accommodate up to 40 people and everyone wants to bathe”, says Israel.

“The water heater works perfectly. We installed it on the roof and all went well. We have 18 rooms, all with hot water, because from the beginning we had decided to have hot water. If we are working with tourism, we have to provide hot water. There are over 100 hotels in Chivay, for all tastes and prices, and most already have hot water”, he adds.

We climbed to the roof to see the water heater and he told us that initially they used electricity, but it was a large expense. Some hotels also use gas, but many are opting for solar energy, which Israel says is the most economical way. “It pays for itself and requires little maintenance", he says.

The Fondesurco microfinance offers installation of the solar heaters and provides a guarantee of five years. Moreover, Chivay enjoys a blue sky and a bright sun, which is also an assurance that there will be a constant source of heat for hot water stored in the tank. Isarel and his wife agreed to a twoyear financing with nothing down and find it quite manageable. Also, maintenance is very simple and consists mainly in cleaning the tubes.

Ana also tells us that her 11 year old son is excited about the heater. “Now, he can bathe everyday after coming home from school. The heater helps a lot and there is enough hot water for everyone”, he says.


Rooms for rent

We walked a few more blocks down the small town, the capital of the valley, and found Mrs. Antonia at home. She also provides a hosting service to people who come to stay for seasons, such as public employees, teachers and sanity workers. “I use solar hot water for dishwashing in the kitchen and laundry, but especially as a service for my guests”, she says, as we enjoy the view from the roof of her home.

She installed the solar water heater just a few months after opening the guest house, since potential guests requested hot water. Antonia has nine rooms rented , that is, all of her two-floor house. “Having hot water is virtually a requirement to rent rooms. People bathe, especially in the evening and the morning”, she says. She acquired her solar water heater two years ago and has finished paying off the Fondesurco financing.


Household family use

We return to the village and decided to take a motorcycle taxi to go to the house of Helena Huaracha, who lives outside of Chivay, in a place called “Pueblo Joven de Chivay”, a sort of new district next to the town. We have had the solar water heater for more than a year. It gives intense heat and the water is always boiling. All year we have hot water, especially in frosty weather for bathing and washing clothes”, she tells us.

She and her husband decided to buy a solar water heater when information came from a promotional campaign by Fondesurco. In six months they paid off the loan. She also runs a small shop and her husband works in a hotel. “My husband takes care of the water heater, he does the maintenance, cleans the tubes or removes garbage that sometimes comes with the water and prevents the normal flow of the pipes. Also, installation was easy because we had everything ready at home”, adds Helena as she offers a soda from the counter of her small shop on the side of the house.

We also asked her what it meant in their lives to have daily hot water. Helena is 33 years old , has four children and was born in the town of Chivay, where she has spent all her life. “When we did not have the solar water heater, we had to heat water with gas or go to the hot springs, but we could not carry the babies every day. Now, the solar water heater means a lot of savings. We do not spend on electricity, since it is totally heated by the sun”, she says, clearly emphasizing the benefits offered by this technology.

She tells us that the heater even keeps the heat at night, despite the low temperatures. “Sometimes you can feel even freezing temperatures outside, but the water is still warm in the morning when we open the drain, even in the winter months when the cold is intense”, she says.

Eventually, she would like to open a hotel, because her husband knows this business. “My husband works in a local hotel and there the water was heated with gas, but they now have three large solar water heaters. It is one of the leading hotels in the city”, she explains.

Gradually, our visit to the village ends and these three stories leave no doubt that hot water is possible, even in the most remote areas of Peru. Undoubtedly, the abundant sunshine that distinguishes the country, the “Inti”, which is the word for Sun used by the Incas, is a good ally for it. In addition, various organizations and microfinance institutions, such as Fondesurco are present to promote and provide alternative technologies that enable new ways to use the solar energy source, for example to get hot water, essential to our daily life, and even more so, in the country highlands.


Fondesurco, a microfinance institution

“The solar water heaters work pretty well. Here it is quite cold and very necessary. We offer heater of 120 liters for family use, which is our most required product. For example, in Madrigal, a neighboring district, people have already begun to try them and also to spread the word, because the credit is a good opportunity. In addition, the technician is included in the installation service. In general, we try to reach all the 24 districts of the province".

Rosa Luz Puma Aquino, Customers Service

Concentrating Solar Thermal Power

Concentrating solar thermal powersystems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.

Solar energy can also be concentrated and used for cooking applications. This is done using a wide range of technologies such as box cookers, solar bowls and the Scheffler reflector.


Further Information


References

  1. 1.0 1.1 1.2 GTZ (2007): Eastern Africa Resource Base: GTZ Online Regional Energy Resource Base: Regional and Country Specific Energy Resource Database: I - Energy Technology