Publication - A review of the physicochemical characteristics of ultrafine particle emissions from domestic solid fuel combustion during cooking and heating

From energypedia

►Add a New Publication
►See All Latest Publications

Title
A review of the physicochemical characteristics of ultrafine particle emissions from domestic solid fuel combustion during cooking and heating
Publisher
ELSEVIER
Author
Abidemi Kuye a, Prashant Kumar a b
Published in
August 2023
Abstract
Residential solid fuel combustion has increased because of rising energy costs but little is known about the emission characteristics of unregulated pollutants such as ultrafine particles (UFPs). This review aims to characterize the emissions and chemical composition of UFPs, build an understanding of the particle number size distribution (PSD), assess the factors affecting pollutants emission, and the efficacy of pollutants mitigation strategies. A systematic appraisal of the literature suggests that the pollutants emissions from domestic solid fuel combustion are influenced by the quality and type of fuels, stove types, and combustion conditions. Low volatile matter content fuels such as smokeless fuels emit lesser PM2.5, NOX, and SO2 than high volatile matter content fuels such as wood. However, CO emissions do not directly correlate with volatile matter content but depend on air supply, combustion temperature, and fuel particle size. The majority of UFPs are emitted during the coking and flaming phases of combustion. Since UFPs have a large surface area, they adsorb significant amounts of hazardous metals and chemicals such as PAHs, As, Pb, and NO3 in addition to minor amounts of C, Ca, and Fe. The emission factor of solid fuel based on the particle number concentration (PNC) can range from 0.2 to 2 × 1015 # kg−1 of fuel. UFPs were not found to be reduced by improved stoves, mineral additives, or small-scale electrostatic precipitators (ESP). In fact, improved cook stoves were found to increase UFP emissions by a factor of 2 compared with conventional stoves. However, they have demonstrated a 35–66 % reduction in PM2.5 emissions. Using a domestic stove within a home puts occupants at risk of being exposed to significant concentrations of UFPs in a short period of time. As there are limited studies on the topic area, further research on different improved heating stoves is required to better understand their emissions of unregulated pollutants such as the UFPs.
URL


Admin: