Knowledge fuels change - Support energypedia!
For over 10 years, energypedia has been connecting energy experts around the world — helping them share knowledge, learn from each other, and accelerate the global energy transition.
Today, we ask for your support to keep this platform free and accessible to all. Even a small contribution makes a big difference! If just 10–20% of our 60,000+ monthly visitors donated the equivalent of a cup of coffee — €5 — Energypedia would be fully funded for a whole year.
Is the knowledge you’ve gained through Energypedia this year worth €5 or more?
Your donation keeps the platform running, helps us create new knowledge products, and contributes directly to achieving SDG 7.


Donate now and support open access to energy expertise

Thank you for your support, your donation, big or small, truly matters!

Difference between revisions of "Solar Home System (SHS) - Climate Protection"

From energypedia
***** (***** | *****)
***** (***** | *****)
Line 1: Line 1:
= GHG reduction potential of SHS =
+
= GHG reduction potential of SHS =
  
*<span>"Savings of 9 tonnes of CO2 equivalent GHG emissions within a 20-year period of use of one single 50 Wp SHS";
+
*<span>"Savings of 9 tonnes of CO2 equivalent GHG emissions within a 20-year period of use of one single 50 Wp SHS"; </span><span>=&gt; '''0.45 t CO2/year<ref>Posorski, Rolf et al.: Does the use of Solar Home Systems (SHS) contribute to climate protection?, 2002, Renewable Energy, Volume 28, Number 7, June 2003, pp. 1061-1080 (20).</ref>'''</span>  
</span><span>=&gt; '''0.45 t CO2/year<ref>Posorski, Rolf et al.: Does the use of Solar Home Systems (SHS) contribute to climate protection?, 2002, Renewable Energy, Volume 28, Number 7, June 2003, pp. 1061-1080 (20).</ref>'''</span>
+
*<span>"Typicale SHS of 10-50 Wp will directly displace roughly '''0.15-0.30 tons of CO2''' per year through fuel substitutions mostly of kerosene."<ref>REPP: Steven Kaufman: Rural Electrification with Solar Energy as a Climate Protection Strategy, Research Report No. 9, 2000.</ref></span>  
*<span>"Typicale SHS of 10-50 Wp will directly displace roughly '''0.15-0.30 tons of CO2''' per year through fuel substitutions mostly of kerosene."<ref>REPP: Steven Kaufman: Rural Electrification with Solar Energy as a Climate Protection Strategy, Research Report No. 9, 2000.</ref></span>
+
*<span>"</span><span>During a previous analysis of 8 case studies, it was found roughly '''0.25 tons of CO2''' per average system of 44 Wp per year would represent a conservative but reasonable global value. […] 70% of the analysed emission reductions were actually higher than 250 kg."<ref>Martens et al. (2001): Towards a streamlined CDM process for Solar Home Systems.</ref></span>&lt;span /&gt;
*<span>"</span><span>During a previous analysis of 8 case studies, it was found roughly '''0.25 tons of CO2''' per average system of 44 Wp per year would represent a conservative but reasonable global value. […] 70% of the analysed emission reductions were actually higher than 250 kg."<ref>Martens et al. (2001): Towards a streamlined CDM process for Solar Home Systems.</ref></span><span />
 
  
 
= Further Reading =
 
= Further Reading =

Revision as of 13:55, 28 June 2010

GHG reduction potential of SHS

  • "Savings of 9 tonnes of CO2 equivalent GHG emissions within a 20-year period of use of one single 50 Wp SHS"; => 0.45 t CO2/year[1]
  • "Typicale SHS of 10-50 Wp will directly displace roughly 0.15-0.30 tons of CO2 per year through fuel substitutions mostly of kerosene."[2]
  • "During a previous analysis of 8 case studies, it was found roughly 0.25 tons of CO2 per average system of 44 Wp per year would represent a conservative but reasonable global value. […] 70% of the analysed emission reductions were actually higher than 250 kg."[3]<span />

Further Reading

Posorski, Rolf et al.: Does the use of Solar Home Systems (SHS) contribute to climate protection?, 2002, Renewable Energy, Volume 28, Number 7, June 2003, pp. 1061-1080 (20).

REPP: Steven Kaufman: Rural Electrification with Solar Energy as a Climate Protection Strategy, Research Report No. 9, 2000.

Martens et al. (2001): Towards a streamlined CDM process for Solar Home Systems.

References

  1. Posorski, Rolf et al.: Does the use of Solar Home Systems (SHS) contribute to climate protection?, 2002, Renewable Energy, Volume 28, Number 7, June 2003, pp. 1061-1080 (20).
  2. REPP: Steven Kaufman: Rural Electrification with Solar Energy as a Climate Protection Strategy, Research Report No. 9, 2000.
  3. Martens et al. (2001): Towards a streamlined CDM process for Solar Home Systems.



⇒ Back to Solar Section