Difference between revisions of "Batteries"

From energypedia
***** (***** | *****)
***** (***** | *****)
Line 100: Line 100:
  
 
<br/>
 
<br/>
 +
  
 
== Primary Batteries<br/> ==
 
== Primary Batteries<br/> ==
 
<div class="mw-collapsible mw-collapsed">
 
<div class="mw-collapsible mw-collapsed">
 
Are the non rechargeable batteries, this means the internal reaction occurs only in one direction therefore the battery life time ends after one cycle.The advantage of this type of batteries is that they have a high energy density. Carbon-zinc batteries and alkaline batteries are the most common types.
 
Are the non rechargeable batteries, this means the internal reaction occurs only in one direction therefore the battery life time ends after one cycle.The advantage of this type of batteries is that they have a high energy density. Carbon-zinc batteries and alkaline batteries are the most common types.
<br/></div>
 
<br/>
 
  
 
<br/>
 
<br/>
 
+
</div>
 
 
 
 
 
 
 
 
  
  

Revision as of 09:24, 11 August 2017

Overview

Most of the information at this wiki page on batteries for solar systems is taken from: Polar Power Inc., except for the paragraphs on nickel iron batteries and recycling and otherwise indicated paragraphs.


Batteries store the electrical energy generated by the modules during sunny periods, and deliver it whenever the modules cannot supply power. Normally, batteries are discharged during the night or cloudy weather. But if the load exceeds the array output during the day, the batteries can supplement the energy supplied by the modules.

The interval which includes one period of charging and one of discharging is described as a "cycle." Ideally, the batteries are recharged to 100 % capacity during the charging phase of each cycle. The batteries must not be completely discharged during each cycle.

No single component in a photovoltaic (PV) system is more affected by the size and usage of the load than storage batteries. If a charge controller is not included in the system, oversized loads or excessive use can drain the batteries' charge to the point where they are damaged and must be replaced. If a controller does not stop overcharging, the batteries can be damaged during times of low or no load usage or long periods of full sun.

For these reasons, battery systems must be sized to match the load. In addition, different types and brands of batteries have different "voltage set point windows." This refers to the range of voltage the battery has available between a fully discharged and fully charged state.

As an example, a battery may have a voltage of 14 volts when fully charged, and 11 when fully discharged. Assume the load will not operate properly below 12 volts. Therefore, there will be times when this battery cannot supply enough voltage for the load. The battery's voltage window does not match that of the load.


Selection of Battery Technology

The selection of the appropriate battery technology according to the requirements is a crucial part of the design of a system. These requirements may differ by project region.

Below a selection of considerations can be found. A weighting, as mentioned, depends on the installed system type and various specific factor of the project country (e.g. knowledge of technology, maintenance structure,...).


Storage Technology Requirements[1]:

  • Availability 
  • Local Knowledge of Technique 
  • Complexity 
  • Durability 
  • Scalability
  • Environment/ Health Impact
  • Costs
  • Vulnerability
  • Establishment
  • Manufacturability
  • Maintenance


A radar-diagram (or spider web) can help to visualise these specific requirements.


Performance

The performance of storage batteries is described in two ways:

  1. amp-hour capacity
  2. depth of cycling


Amp-hour Capacity

Charge and Discharge Rates

Temperature

Depth of Discharge (DOD)

Different Battery Types

Batteries can be classified in 2 categories.



Primary Batteries


Secondary Batteries



Lead Acid Batteries

Vented Lead Acid Batteries

Internal Construction

Terminals

Venting

State of Charge, Specific Gravity and Voltage

Freezing Point

Sealed Flooded (Wet) Lead Acid Batteries

Captive Electrolyte Batteries

Nickel Cadmium (Ni Cad) Batteries



Nickel Iron Batteries


Lithium Ion Batteries

Ice Bear

lithium-air

Chosing a Battery for a Solar Home System (SHS)

Typical Problems of Batteries

Sulfation

Treeing

Mossing

Recycling of Batteries of Photovoltaic (PV) Systems

Further Information


References