Difference between revisions of "Wind Energy - Physics"

From energypedia
***** (***** | *****)
m
***** (***** | *****)
m
Line 1: Line 1:
== Wind Power ==
+
<h2> Wind Power  </h2>
 +
<p>The power <i>P </i>of a wind-stream, crossing an area <i>A </i>with velocity <i>v </i>is given by
 +
</p><p>&#160;<img _fckfakelement="true" _fck_mw_math="P=\frac{1}{2}\rho A v^3" src="/images/math/a/f/f/aff47ae2d0c794edc79c72dc23327697.png" /><br />
 +
</p><p>It varies proportional to air density <span class="texhtml">&#961;</span>, to the crossed area <i>A </i>and to the cube of wind velocity <i>v</i>.&#160;
 +
</p><p>The Power <i>P </i>is the kinetic energy
 +
</p><p><img _fckfakelement="true" _fck_mw_math="E=\frac{1}{2}mv^2" src="/images/math/d/0/9/d09bd4120bbded4606433d6eb4539e7c.png" />
 +
</p><p>of the air-mass <i>m </i>crossing the area <i>A&#160;</i>during a time interval <br />
 +
</p><p><img _fckfakelement="true" _fck_mw_math="\dot{m}=A \rho \frac{dx}{dt}=A\rho v" src="/images/math/b/3/e/b3ef61411620083fa8c4d12f2df4d414.png" />.
 +
</p><p>Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation
 +
</p><p><img _fckfakelement="true" _fck_mw_math="P=\dot{E}=\frac{1}{2}\dot{m}v^2=\frac{1}{2}\rho A v^3" src="/images/math/e/d/d/eddae381c857bc2114fd643b32111bf9.png" />
 +
</p><p>The power of a wind-stream is transformed into mechanical energy by a wind turbine through slowing down the moving air-mass which is crossing the rotor area. For a complete extraction of power, the air-mass would have to be stopped completely, leaving no space for the following air-masses. Betz and Lanchester found, that the maximum energy can be extracted from a wind-stream by a wind turbine, if the relation of wind velocities in front of (<span class="texhtml"><i>v</i><sub>1</sub></span>) and behind the rotor area (<span class="texhtml"><i>v</i><sub>2</sub></span>) is <span class="texhtml"><i>v</i><sub>1</sub> / <i>v</i><sub>2</sub> = 1 / 3</span>. The maximum power extracted is then given by<br />
 +
</p><p><img _fckfakelement="true" _fck_mw_math="P_{Betz}=\frac{1}{2} \rho A v^3 c_{P.Betz}" src="/images/math/0/8/3/08377cd8c23f47f4ce336b72d8422baf.png" />
 +
</p><p>where <span class="texhtml"><i>c</i><sub><i>p</i>.<i>B</i><i>e</i><i>t</i><i>z</i></sub> = 0,59</span> is the power coefficient giving the ratio of the total amount of wind energy which can be extracted theoretically, if no losses occur. Even for this ideal case only 59% of wind energy can be used. In practice power coefficients are smaller: todays wind turbines with good blade profiles reach values of&#160;<span class="texhtml"><i>c</i><sub><i>p</i>.<i>B</i><i>e</i><i>t</i><i>z</i></sub> = 0,5</span>.
 +
</p>
 +
<h2> Unit abbreviations  </h2>
 +
<table width="399" cellspacing="1" cellpadding="1" border="0" align="left" style="">
  
The power ''P ''of a wind-stream, crossing an area ''A ''with velocity ''v ''is given by
+
<tr>
 
+
<td> m = metre = 3.28 ft.<br />
&nbsp;[[File:]]
+
</td>
 
+
<td> HP = horsepower<br />
It varies proportional to air density <span class="texhtml">ρ</span>, to the crossed area ''A ''and to the cube of wind velocity ''v''.&nbsp;
+
</td></tr>
 
+
<tr>
The Power ''P ''is the kinetic energy
+
<td> s = second<br />
 
+
</td>
[[File:]]
+
<td> J = Joule<br />
 
+
</td></tr>
of the air-mass ''m ''crossing the area ''A&nbsp;''during a time interval
+
<tr>
 
+
<td> h = hour<br />
[[File:]].
+
</td>
 
+
<td> cal = calorie<br />
Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation
+
</td></tr>
 
+
<tr>
[[File:]]
+
<td> N = Newton<br />
 
+
</td>
The power of a wind-stream is transformed into mechanical energy by a wind turbine through slowing down the moving air-mass which is crossing the rotor area. For a complete extraction of power, the air-mass would have to be stopped completely, leaving no space for the following air-masses. Betz and Lanchester found, that the maximum energy can be extracted from a wind-stream by a wind turbine, if the relation of wind velocities in front of (<span class="texhtml">''v''<sub>1</sub></span>) and behind the rotor area (<span class="texhtml">''v''<sub>2</sub></span>) is <span class="texhtml">''v''<sub>1</sub> / ''v''<sub>2</sub> = 1 / 3</span>. The maximum power extracted is then given by
+
<td> toe = tonnes of oil equivalent<br />
 
+
</td></tr>
[[File:]]
+
<tr>
 
+
<td> W = Watt<br />
where <span class="texhtml">''c''<sub>''p''.''B''''e''''t''''z''</sub> = 0,59</span> is the power coefficient giving the ratio of the total amount of wind energy which can be extracted theoretically, if no losses occur. Even for this ideal case only 59% of wind energy can be used. In practice power coefficients are smaller: todays wind turbines with good blade profiles reach values of&nbsp;<span class="texhtml">''c''<sub>''p''.''B''''e''''t''''z''</sub> = 0,5</span>.
+
</td>
 
+
<td> Hz = Hertz (cycles per second)<br />
== Unit abbreviations ==
+
</td></tr></table>
 
+
<p><br />
{| style="" align="left" width="399" border="0" cellpadding="1" cellspacing="1"
+
</p><p><br />
|-
+
</p><p><br />
| m = metre = 3.28 ft.<br/>
+
</p><p><br />
| HP = horsepower<br/>
+
</p><p><span class="texhtml">10<sup> &#8722; 12</sup></span> = p pico = 1/1000,000,000,000  
|-
+
</p><p><span class="texhtml">10<sup> &#8722; 9</sup></span>&#160;= n nano = 1/1000,000,000  
| s = second<br/>
+
</p><p><span class="texhtml">10<sup> &#8722; 6</sup></span> = µ micro = 1/1000,000  
| J = Joule<br/>
+
</p><p><span class="texhtml">10<sup> &#8722; 3</sup></span> = m milli = 1/1000  
|-
+
</p><p><span class="texhtml">10<sup>3</sup></span> = k kilo = 1,000 = thousands  
| h = hour<br/>
+
</p><p><span class="texhtml">10<sup>6</sup></span> = M mega = 1,000,000 = millions  
| cal = calorie<br/>
+
</p><p><span class="texhtml">10<sup>9</sup></span> = G giga = 1,000,000,000  
|-
+
</p><p><span class="texhtml">10<sup>12</sup></span> = T tera = 1,000,000,000,000  
| N = Newton<br/>
+
</p><p><span class="texhtml">10<sup>15</sup></span> = P peta = 1,000,000,000,000,000  
| toe = tonnes of oil equivalent<br/>
+
</p><p><br />
|-
+
</p><p><a _fcknotitle="true" href="Portal:Wind">Portal:Wind</a>
| W = Watt<br/>
+
</p>
| Hz = Hertz (cycles per second)<br/>
 
|}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<span class="texhtml">10<sup>12</sup></span> = p pico = 1/1000,000,000,000
 
 
 
<span class="texhtml">10<sup>9</sup></span>&nbsp;= n nano = 1/1000,000,000
 
 
 
<span class="texhtml">10<sup>6</sup></span> = µ micro = 1/1000,000
 
 
 
<span class="texhtml">10<sup>3</sup></span> = m milli = 1/1000
 
 
 
<span class="texhtml">10<sup>3</sup></span> = k kilo = 1,000 = thousands
 
 
 
<span class="texhtml">10<sup>6</sup></span> = M mega = 1,000,000 = millions
 
 
 
<span class="texhtml">10<sup>9</sup></span> = G giga = 1,000,000,000
 
 
 
<span class="texhtml">10<sup>12</sup></span> = T tera = 1,000,000,000,000
 
 
 
<span class="texhtml">10<sup>15</sup></span> = P peta = 1,000,000,000,000,000
 
 
 
 
 
 
 
[[Portal:Wind]]
 
  
 
[[Category:Wind]]
 
[[Category:Wind]]

Revision as of 10:09, 16 May 2012

Wind Power

The power P of a wind-stream, crossing an area A with velocity v is given by

 <img _fckfakelement="true" _fck_mw_math="P=\frac{1}{2}\rho A v^3" src="/images/math/a/f/f/aff47ae2d0c794edc79c72dc23327697.png" />

It varies proportional to air density ρ, to the crossed area A and to the cube of wind velocity v

The Power P is the kinetic energy

<img _fckfakelement="true" _fck_mw_math="E=\frac{1}{2}mv^2" src="/images/math/d/0/9/d09bd4120bbded4606433d6eb4539e7c.png" />

of the air-mass m crossing the area during a time interval

<img _fckfakelement="true" _fck_mw_math="\dot{m}=A \rho \frac{dx}{dt}=A\rho v" src="/images/math/b/3/e/b3ef61411620083fa8c4d12f2df4d414.png" />.

Because power is energy per time unit, combining the two equations leads back to the primary mentioned basic relationship of wind energy utilisation

<img _fckfakelement="true" _fck_mw_math="P=\dot{E}=\frac{1}{2}\dot{m}v^2=\frac{1}{2}\rho A v^3" src="/images/math/e/d/d/eddae381c857bc2114fd643b32111bf9.png" />

The power of a wind-stream is transformed into mechanical energy by a wind turbine through slowing down the moving air-mass which is crossing the rotor area. For a complete extraction of power, the air-mass would have to be stopped completely, leaving no space for the following air-masses. Betz and Lanchester found, that the maximum energy can be extracted from a wind-stream by a wind turbine, if the relation of wind velocities in front of (v1) and behind the rotor area (v2) is v1 / v2 = 1 / 3. The maximum power extracted is then given by

<img _fckfakelement="true" _fck_mw_math="P_{Betz}=\frac{1}{2} \rho A v^3 c_{P.Betz}" src="/images/math/0/8/3/08377cd8c23f47f4ce336b72d8422baf.png" />

where cp.Betz = 0,59 is the power coefficient giving the ratio of the total amount of wind energy which can be extracted theoretically, if no losses occur. Even for this ideal case only 59% of wind energy can be used. In practice power coefficients are smaller: todays wind turbines with good blade profiles reach values of cp.Betz = 0,5.

Unit abbreviations

m = metre = 3.28 ft.
HP = horsepower
s = second
J = Joule
h = hour
cal = calorie
N = Newton
toe = tonnes of oil equivalent
W = Watt
Hz = Hertz (cycles per second)





10 − 12 = p pico = 1/1000,000,000,000

10 − 9 = n nano = 1/1000,000,000

10 − 6 = µ micro = 1/1000,000

10 − 3 = m milli = 1/1000

103 = k kilo = 1,000 = thousands

106 = M mega = 1,000,000 = millions

109 = G giga = 1,000,000,000

1012 = T tera = 1,000,000,000,000

1015 = P peta = 1,000,000,000,000,000


<a _fcknotitle="true" href="Portal:Wind">Portal:Wind</a>