Difference between revisions of "Design of Photovoltaic (PV) Pumping"

From energypedia
***** (***** | *****)
m
***** (***** | *****)
m
Line 6: Line 6:
  
 
#[[Design of Photovoltaic (PV) Pumping#Determination_of_Water_Supply_Need|Determination of water supply need]]
 
#[[Design of Photovoltaic (PV) Pumping#Determination_of_Water_Supply_Need|Determination of water supply need]]
#[[Design_of_Photovoltaic_(PV)_Pumping#Calculation_of_Pumping_Head|Calculation of pumping head]]
+
#[[Design of Photovoltaic (PV) Pumping#Calculation_of_Pumping_Head|Calculation of pumping head]]
#[[Design_of_Photovoltaic_(PV)_Pumping#Estimation_of_Solar_Resource|Estimation of solar resource]]
+
#[[Design of Photovoltaic (PV) Pumping#Estimation_of_Solar_Resource|Estimation of solar resource]]
 
#Finding appropriate solar pump and inverter
 
#Finding appropriate solar pump and inverter
 
#Calculation of PV panel required
 
#Calculation of PV panel required
 +
  
  
Line 21: Line 22:
  
  
= Determination of Water Supply Need (domestic water supply)<br/> =
+
== Domestic Water Supply<br/> ==
  
 
For domestic water supply, the first data needed is to estimate the water requirement for one person/day.
 
For domestic water supply, the first data needed is to estimate the water requirement for one person/day.
Line 80: Line 81:
 
#Minor losses head is influenced by piping accessories including valve, elbow, inlet pipe etc
 
#Minor losses head is influenced by piping accessories including valve, elbow, inlet pipe etc
  
The detailed explanation can be found on<ref name="Mathematic of Pumping Water">http://www.raeng.org.uk/education/diploma/maths/pdf/exemplars_advanced/17_pumping_water.pdf</ref>.
+
The detailed explanation can be found on "[http://www.raeng.org.uk/education/diploma/maths/pdf/exemplars_advanced/17_pumping_water.pdf The Mathematics of Pumping Water, AECOM Design Build Civil, Mechanical Engineering"].
  
  
Line 94: Line 95:
 
#Solar Energy / Day ► cited on unit of kWh/m2/day or PSH &nbsp; &nbsp; (commonly used for solar pumping design)
 
#Solar Energy / Day ► cited on unit of kWh/m2/day or PSH &nbsp; &nbsp; (commonly used for solar pumping design)
 
#Instantaneous Solar Power ► cited on unit of W/m2 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (only used for complex modelling)
 
#Instantaneous Solar Power ► cited on unit of W/m2 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (only used for complex modelling)
 +
 +
 +
 +
= Further Information<br/> =
 +
 +
*[http://www.raeng.org.uk/education/diploma/maths/pdf/exemplars_advanced/17_pumping_water.pdf The Mathematics of Pumping Water, AECOM Design Build Civil, Mechanical Engineering]
  
  

Revision as of 09:16, 11 October 2012

Overview

In order to implement cost effective photovoltaic (PV) pumping system, it is necessary to follow some basic guidelines to design and size every system component. This page will explain about detailed calculation needed for sizing every system component.

The basic step to design photovoltaic (PV) pumping system is:

  1. Determination of water supply need
  2. Calculation of pumping head
  3. Estimation of solar resource
  4. Finding appropriate solar pump and inverter
  5. Calculation of PV panel required


Determination of Water Supply Need

According to [1], there are two distinct application for photovoltaic (PV) pumping system; 

  1. Drinking water supply (domestic water supply)
  2. Irrigation water supply


Domestic Water Supply

For domestic water supply, the first data needed is to estimate the water requirement for one person/day.

A good estimate can be found from [2], that relate how much water required to sustain particular activities. Here is the estimate:

Purpose

Recommended minimum

(liter/person/day)


Drinking water

5

Sanitary services

20

Bathing

15

Cooking and Kitchen

10

Total

50

For example, if there are a village with basic need of drinking water, bathing and sanitary services but no need for cooking; then it will require 5+20+15=40 liter/person/day. If the population is 300 persons, then the entire village will require 300 x 40 = 12 000 liter/day. Normally to compensate for water leakage on piping or distribution, 20% additional water will be required then the village will require 14 400 liter/day or 14.4 m3/day.


Calculation of Pumping Head

Pumping head is normally measured in meter (m), so sometimes there are misconception that pumping head is equal to pumping elevation. In actual, pumping head is divided into three components: elevation head, major losses head, and minor losses head.

Pumping Head (m) = Elevation Head (m) + Major Losses Head (m) + Minor Losses Head (m)

  1. Elevation head is measured from the water source surface level to the point of outlet pipe level.
  2. Major losses head is influenced by water flow rate, diameter of pipe, length of pipe, and type of pipe (PVC, HDPE etc)
  3. Minor losses head is influenced by piping accessories including valve, elbow, inlet pipe etc

The detailed explanation can be found on "The Mathematics of Pumping Water, AECOM Design Build Civil, Mechanical Engineering".


Estimation of Solar Resource

Ideally, a ground based solar radiation measurement in location to be installed with solar water pumping system, is required in order to measure accurately the solar resource available for every part of the year. However, due to expensive equipment required, alternative data can be obtained from http://eosweb.larc.nasa.gov/sse/ for every part of the world freely or other solar resource data website available in the internet. 

Solar resources available per day is cited on unit of kWh/m2/day or PSH (peak sun hour) with 1 kWh/m2/day = 1 PSH. Common confusion of solar resource data understanding is usually with solar data cited on unit of W/m2 that describe power.

What is needed on solar pumping design is data cited on energy:

  1. Solar Energy / Day ► cited on unit of kWh/m2/day or PSH     (commonly used for solar pumping design)
  2. Instantaneous Solar Power ► cited on unit of W/m2               (only used for complex modelling)


Further Information


References