Knowledge fuels change - Support energypedia!
For over 10 years, energypedia has been connecting energy experts around the world — helping them share knowledge, learn from each other, and accelerate the global energy transition.
Today, we ask for your support to keep this platform free and accessible to all.
Even a small contribution makes a big difference! If just 10–20% of our 60,000+ monthly visitors donated the equivalent of a cup of coffee — €5 — Energypedia would be fully funded for a whole year.
Is the knowledge you’ve gained through Energypedia this year worth €5 or more?
Your donation keeps the platform running, helps us create new knowledge products, and contributes directly to achieving SDG 7.
Thank you for your support, your donation, big or small, truly matters!
Difference between revisions of "Photovoltaic (PV) Pumping"
***** (***** | *****) |
***** (***** | *****) |
||
| Line 26: | Line 26: | ||
|} | |} | ||
| − | + | <br> | |
{| cellspacing="0" cellpadding="0" border="1" | {| cellspacing="0" cellpadding="0" border="1" | ||
| Line 47: | Line 47: | ||
|} | |} | ||
| − | [[Image: | + | |
| + | |||
| + | |||
| + | |||
| + | [[Image:Pv pumping costs.png|frame|left|Comparison of specific pumping costs for different PV pumping systems and diesel pumps]] | ||
= Irrigation = | = Irrigation = | ||
Revision as of 14:31, 24 June 2010
Drinking Water Supply
PVP -Power
|
Head [m]
|
Flow Rate [m³]
|
People Supplied (Consuming 25 l/c*d)
|
1 kWp (equals about 500 m4/day)
|
10 30 50
|
50 15 10
|
2000 600 400
|
2 kWp (equals about 1000 m4/day)
|
10 30 50
|
100 35 20
|
4000 1400 800
|
4 kWp (equals about 2000 m4/day)
|
10 30 50
|
200 65 40
|
8000 2600 1600
|
Average Investment [Euro]
|
1 kWp
|
2 kWp
|
4 kWp
|
Pumping System (PV-Generator, Inverter, Pump)
|
8000
|
15000
|
25000
|
Ready-to-operate PV Pumping System (Pumping system, logistics, set-up, reservoir, construction, water distribution)
|
16000
|
25000
|
41000
|
Irrigation
- In order to reduce the energy requirements of PVP irrigation systems water-conserving and energy-saving micro-irrigation techniques have to be applied.
- The plot size for PVP irrigation should be below 4 hectares.
- High rates of system utilisation are necessary to achieve economic viability of PVP irrigation systems.
- Therefore PVP systems are limited to irrigate permanent crops and continuous crop rotation in arid climates.
- High value-added cash crops like fruits, vegetables and spices should be given preference to recoup the high initial investment.
- Low-interest loans should be available for the same reason.
- PVP irrigation systems require a careful planning of the crop schedule and are more demanding of user skills.




















