Hohenheim Milk Cooling System - Implementation in Kenya
- Kenya, January 2016 until December 2017:
Smallholder dairy farms are the major providers of marketed milk in Kenya becoming even stronger when associating in cooperatives. The channels of raw milk production from the farm to the market are shown in Figure 1. These groups are mostly constrained by lack of cooling systems, reduced hygiene minimum cleaning procedures and in some cases problems with cattle health, resulting in high microbial contamination. Under warm climatic conditions, raw milk can exceed the maximum bacterial count after two to five hours without cooling resulting in a lack of quality and leading to high rates of rejected milk at the different stages of collection. Therefore, drawing on the experience with an ongoing research project in Tunisia, the group is pilot testing a solar-based cooling system that can be operated independently offering an off grid solution for remote areas. This research aims the development of dairy value chains in an integrated approach to improve productivity and reduce losses along the value chain. The work is supported by the Program of Accompanying Research for Agricultural Innovation – PARI and GIZ initiatives in Kenya (Powering Agriculture-PA and Green Innovation Centres – GIC).
Figure 1. Handling of milk from the farm town ward to the satellites (collecting point) and then to the cooperative for further processing.
The success for the implementation of this innovative technology relies on the plastic insulated milk can. As a first stage of the introduction of the technology, measurements on milk temperature during transport were collected from milking to the moment of retailing at SAM Malanga dairy cooperative society in Siaya county (located at 0.06 N, 34.29 E). The target was the establishment of the state of the art in the region. Milk temperature profiles were genertated over the transport time to the cooperative as it is shown in Figure 2. By performing this procedure, a low milk quality could be expected.
Figure 2. Ambient temperature and milk temperature during transport from the farm to the cooperative.
Base on this initial information, milk temperature profile was evaluated in the insulated milk can and compare with a traditional milk can (aluminum milk can) following the protocol for the stainless steel insulated milk can for Tunisia. Figure 3 shows the similar performance of the stainless steel milk can, which will result in preservation of milk quality.