Difference between revisions of "Kenya Energy Situation"

From energypedia
***** (***** | *****)
m
***** (***** | *****)
Line 158: Line 158:
  
 
Despite the fact that traditional biomass dominates the energy landscape, little or no budget is provided for research, development and dissemination for heat and drought resistant crops, biofuels and modern biomass energy use. While some progress has been made in disseminating efficient wood and charcoal stoves, more needs to be done to building more diversity and strengthening the resilience of the energy system.  
 
Despite the fact that traditional biomass dominates the energy landscape, little or no budget is provided for research, development and dissemination for heat and drought resistant crops, biofuels and modern biomass energy use. While some progress has been made in disseminating efficient wood and charcoal stoves, more needs to be done to building more diversity and strengthening the resilience of the energy system.  
 +
 +
 +
 +
= Literature =
 +
 +
[[Media:Kenya_country_report.pdf|EAC Strategy to Scale-up Access to Modern Energy Services, Kenya Country Baseline Report and Workplan, April 2008]]
  
 
<br>  
 
<br>  
  
 
[[Category:Kenya]] [[Category:Country_Situation]]
 
[[Category:Kenya]] [[Category:Country_Situation]]

Revision as of 23:31, 19 August 2011

Overview

  Republic of Kenya
 
 

Capital

Nairobi (1° 16′ 0″ S, 36° 48′ 0″ E)

Official language(s)

Swahili, English

Government

Semi-Presidential Republic

President

Mwai Kibaki

Prime Minister

Raila Odinga

Total area

580,367 km2

Population

40,046,566 (2010 estimate)

38,610,097 (2009 census)

GDP (nominal)

$32.417 billion (2010 estimate)

GDP Per capita

$887

Currency

Kenyan shilling (KES)

Time zone

EAT (UTC+3)

Calling code

+254

Energy Sector

The energy sector in Kenya is largely dominated by petroleum and electricity, with wood fuel providing the basic energy needs of the rural communities, urban poor, and the informal sector. An analysis of the national energy shows heavy dependency on wood fuel and other biomass that account for 68% of the total energy consumption (petroleum 22%, electricity 9%, others 1%). Access to Electricity (15% of households) MOE study 2002.

Kenya has an installed capacity of 1.48 GW, while about 57% are hydro power, about 32% are thermal and the rest is divided by geothermal and emergency thermal power. Solar PV and Wind power play a minor role with less than 1%.

Due to increased poverty, there is a significant shift to non-traded traditional biomass fuels. The proportion of households consuming biomass has rose to 83% from 73% in 1980.

Charcoal, firewood, paraffin, and LPG continue to be the main sources of cooking fuel. At the national level 68.8% of the households use firewood as the main cooking fuel with 84.4% being in the rural areas. Many are engaged in production, transformation, transportation and sale of wood and charcoal, making it one of the most important sources of paid livelihood. As a result woody biomass is diminishing due to poor management and utilization in unsustainable ways. Government ministries are supporting in one way or the other the sustainable production of energy crops, trade of charcoal and the dissemination of improved cooking stoves.

Problem Situation

Fuelwood demand in the country is 3.5 million tonnes per year while its supply is1.5 million tonnes per year. The massive deficit in fuelwood supply has led to high rates of deforestation in both exotic and indigenous vegetation resulting to adverse environmental effects such as desertification, land degradation, droughts and famine among others. It is in an effort to reduce these problems that PSDA through collaboration with other Development Partners initiated “Promotion of Improved Energy Stoves” in January 2006. Nevertheless, a high population share still uses firewood for cooking – more than 80% of the population use traditional three stones technology for the same.


In the first phase of the EnDev programme, GTZ has disseminated a significant amount of improved cook stoves (ICS). In addition GTZ promoted the uptake of ICSs by institutions. However, many people without improved stoves still do not know where to get them although they express desire to acquire them. Current improved stove production centres do not meet the demands of the new project areas, especially in the arid and semi-arid regions which need them more than any other regions in the country. This has largely contributed to unsustainable harvesting of biomass with negative impacts on the environment and poor health among users due to excessive inhalation of noxious gases. Up-scaling of improved cook stoves is therefore necessary.


National Energy Policy


The energy policy for Kenya was formulated in 2004, but recently high oil prices and need for energy security have become more urgent drivers for alternative energy. This may call for re-assessment and update of the policy and strategy. For Kenya, high oil prices and the need to increase overall energy per capita supply are strong motivators for development of alternative forms of energy. Transportation fuels remain the most emotive of all energy segments, especially when prices are going up, as this is where lifestyles and livelihoods are visibly impacted. Alternative energy is not only focusing on economics alone, but also looks at security of supply and and other social economic benefits to the country.


A number of options are being considered:

  • The proposed grass-root Garsen sugar project ( bio-ethanol)
  • The government and stakeholders are planning to introduce bio-diesel for both rural energy use and for blending into automotive diesel.
  • Expansion of the geothermal power supply
  • Exploration of the coal deposits in Kitu.


The Energy Regulatory Commission (ERC) was established as an Energy Sector Regulator under the Energy Act of 2006 in July 2007. ERC is a single sector regulatory agency, with responsibility for economic and technical regulation of electric power, renewable energy, and downstream petroleum sub-sectors, including tariff setting and review, licensing, enforcement, dispute settlement.


Renewable Energy

The record of the national utility Kenya Power and Light Company (KPLC) in rural electrification is very poor, with only 0.94% of rural households connected in 2002 [Karekezi et al, 2004]. Between 1993 and 2001 the number of rural households increased by 1.4 Million, whilst the number of rural households connected to the grid increased by only 24,000. Hence, the rate of grid-based rural electrification is far below the rate of increase in potential customers, despite a levy on electricity bills to fund it. Innovative approaches to off-grid electrification are helping to make up for the lack of grid-based rural electrification.

Private sector led electrification using solar home systems

It is estimated that there are 150,000 Solar Home Systems (SHS) installed in Kenya [Karekezi et al, 2004], which is some three times the number of rural homes that are grid connected. This success has been largely due to private sector activity. The high level of uptake has been through the sale of products that best fit the purchasing power of rural households, and by making these products available within the mobility range of potential customers, typically less than 40km from the customers home [Van der Vleuten et al, 2003]. In mature market areas, such as central and western Kenya, between 20 and 40% of households have systems. Most units are in the power range of 10 to 20 Wp. With prices being as low as US$50, the products have been affordable by medium class families without a need for subsidies and credit. However, financial assistance will be necessary if poorer families are to be able to afford an SHS. Most of the SHS sellers started selling these products in the 1990s. As the Kenyan business culture is mainly based upon imitation, once a few shops had been convinced by the Nairobi based distributors, businessmen all over the country replicated their success by selling systems. The level of competition is high with over 800 rural outlets, and by shopping around even the least informed end-user will buy at a reasonable price. Information from friends and relatives is currently the main source that new customers turn to for advice on the best system to use, as the shopkeepers are rarely trusted. More needs to be done to both help customers understand the importance of purchasing quality systems and to help purchasers to identify them. The high level of sales demonstrates the effectiveness and efficiency that the private sector can bring to disseminating SHS – success that has yet to be matched by any utility or donor programme.

Pico hydro community mini-grids

Pico hydro is generally classified as water powered generating systems that produce up to 5kW of electrical power. In Nepal there are more than 600 pico hydros serving a total of more than 10,000 households. In Kenya, three schemes have been installed since 2001, which together supply 325 households. The first two schemes were part-funded by the European Commission, though the communities paid for the distribution systems, house wiring components and contributed free labour and trees to make distribution poles. The third scheme, for 150 households, was carried out without subsidy or grant by a small engineering company that had been involved in the earlier projects. Technical details of the first two projects are presented in case studies [Maher2002]. The electricity is distributed at 230 Volts single phase and restricted to houses that are within 1km of the turbine. Each household subscribes to one or more 10 Watt ‘light packages’ which are sufficient for one 8 Watt Compact Fluorescent Lamp (CFL) and a radio, for which they pay US$0.65 per month per package. This is used to pay a member of the community who operates and maintains the system andcontributes to a repair fund.


Pelton turbine assembly in Kenya (Maher)

Whilst the power supplied to each house is very similar to the peak output of a Solar Home System (SHS) the actual energy supplied is significantly higher as the power output is continuous unless there is a prolonged drought. A cost comparison between pico hydro and SHS gives a cost of $0.15 per kWh for pico hydro compared to more than $1 for SHS [Maher et al, 2003]. The power is currently used for lighting, radios, small TVs and mobile phone charging. At one site a cordless drill is recharged and loaned to community members. The shaft power of the turbine could be used for agro-processing, though this application has not been developed. Pico hydro is mainly limited to the upland areas of Kenya with moderate or high rainfall, such as the Aberdare and Kirinyaga districts, as this is where most suitable sites exist. These upland areas experience more cloudy weather, including three months with almost continuous cloud called the Gathano season during which SHS produce very little power. Locally implemented pico hydro is cheaper than SHS and is a more versatile source of power, it also relies less heavily on imported equipment.


While the Government of Kenya deliberately seeks reforms in the energy sector by encouraging private sector ownership and implementing policies that support diversification of energy sources, several specific steps to off-set current vulnerabilities have yet to be implemented. Several key instruments supporting increased resilience in the energy system such as the availability of flood maps, existence and enforcement of power plant silting and construction guidelines and emergency plans to react to extreme weather events are not available. Even though the country depends heavily on hydropower systems for electricity supply, there are no national plans for optimising hydropower plants operation under alternative future flow regimes.

Despite the fact that traditional biomass dominates the energy landscape, little or no budget is provided for research, development and dissemination for heat and drought resistant crops, biofuels and modern biomass energy use. While some progress has been made in disseminating efficient wood and charcoal stoves, more needs to be done to building more diversity and strengthening the resilience of the energy system.


Literature

EAC Strategy to Scale-up Access to Modern Energy Services, Kenya Country Baseline Report and Workplan, April 2008