Quality Infrastructure for Hydropower in the Context of Climate Change

From energypedia

Sub-Saharan Africa: Quality Infrastructure for Hydropower in the Context of Climate Change

►Back to Project Page

Current trends in the renewable energy sector in times of climate change

Sub-Saharan Africa: Quality Infrastructure for Renewable Energies in the Context of Climate Change

Renewable energies play a key role in climate change mitigation efforts worldwide and can support a country’s energy self-sufficiency (IRENA 2013:9). This is particularly important in developing and emerging countries which have a growing population, increasing electricity needs and low electrification rates. Moreover, some renewable energy technologies such as solar photovoltaic, solar thermal and mini-hydropower installations are well adapted for distributed generation and can support the electrification of rural areas (Agostinelli 2017).

Energy demand in Africa has grown by over 45 % since the year 2000 and electrification efforts in many countries cannot keep up with population growth. Energy supply thus remains low, despite the wealth of energy sources available on the continent. The main issues in Africa’s energy sector are the insufficient capacity and low access to electricity, the poor reliability of the electricity grid and high costs (Agostinelli 2017). It is expected that energy demand will increase substantially in the coming decades as a result of megatrends such as urban population growth and economic development (EUEI PDF 2017).

Sub-Saharan Africa has great potential for renewable energies. As early as 2010, 60 % of energy was generated with hydropower plants in the region and several countries have conducted resource assessments and identified potential for solar power, additional hydropower installations, wind energy, biomass and, in Eastern Africa, geothermal energy (IRENA 2013:6-9). In many countries, renewable energies are also competitive in financial terms. In Kenya and Tanzania, for example, the generation costs of solar photovoltaic and biogas are similar to electricity costs from the public grid for commercial and industrial use, and are considerably lower than electricity generated with diesel (Kaiser 2017).

There is also support on the political level. Internationally, the Paris Agreement provides a policy framework for the advancement of renewable energies and fosters technical assistance and investments in African countries to support climate change mitigation measures. Within the framework of the Agreement, national governments submitted climate action plans along with regions and cities in Sub-Saharan African countries. These plans include the expansion of renewable energies (Munang and Mgendi 2016; EUEI PDF 2017:6). As early as mid-2015, before the Paris Agreement was signed, 35 Sub-Saharan African countries had introduced national renewable energy targets in at least one of the following areas: primary energy supply, final energy consumption, electricity, heating and cooling, and transport (IRENA 2015d).

Furthermore, the Africa Renewable Energy Initiative (AREI) was established to accelerate the expansion of renewable
energy capacities across the continent under the mandate of the African Union. The aim of the initiative is to install 10 GW of renewable energy capacities by 2020 and generate 300 GW from renewable sources by 2030 (AREI 2017).

The achievement of the national and regional targets is challenging because, in most Sub-Saharan African countries,
a favorable policy and an economic and institutional framework still need to be created; at the same time, the different stakeholders need to coordinate and commit to the targets to enable the expansion of renewable energy capacities (Interview 1). Moreover, at present, administrative hurdles, corruption and aspects such as unclear property titles make the expansion of renewable energies difficult. These circumstances delay the development of renewable energies and can result in considerable deadline pressure once the implementation is underway; this, in combination with cost pressure, can compromise the quality of renewable energy installations, especially if experience with renewable technologies is still limited. The
development of solar photovoltaic, for example, is recent in many countries in the region. For this reason, qualified service providers are lacking and services need to be improved. This leads to quality and safety issues – for example, in the installation of rooftop photovoltaic systems. As has been experienced in other developing and emerging economies, the fast development of the technologies in the global market makes it difficult for local industries to keep up. At the same time, capacities to effectively control the quality of imported renewable energy technologies are often lacking. Some countries decide to protect their local industries through local content laws or customs duties, thus creating trade barriers and a national market with limited incentives to be competitive concerning quality (Telfser et al. 2016). Negative experiences with new technologies can damage their reputation and make investors reluctant to support further projects (IRENA 2015b:8).

Significance of quality infrastructure services

As mentioned above, the achievement of national targets is jeopardized by lacking quality due to insufficient coordination
between different stakeholders, by lacking quality assurance, capabilities and capacities of the local industry and service providers, and by time constraints. The establishment of a functioning quality infrastructure is thus essential if the expectations of policy makers, investors and consumers are to be met. Quality infrastructure services help to increase the quality and safety of renewable energy installations and provide consumers with confidence in this technology. Quality assurance and support services are necessary throughout the value chain.

The International Renewable Energy Agency (IRENA) has identified several benefits of a functioning quality infrastructure
for policy makers, manufacturers, professionals and end users. For policy makers, quality infrastructure enables the detection of low-quality products, which allows growing markets to be protected and strengthened and economic growth to be stimulated. Moreover, it helps provide assurance that the renewable energy installations will perform according to expectations, thus supporting the financial viability of the technologies and increasing the return on investment, including that of public incentives for renewable energies. For manufacturers, quality infrastructure can open new markets if locally provided quality  infrastructure services are internationally recognized and prove the quality of local products. Through testing and certification, as well as through the implementation of a quality management system in accordance with international standards, products and manufacturing quality can be improved. For the renewable energy industry, certification (for instance, of installers)  facilitates hiring processes and improves the competitiveness of service providers. This, in turn, results in higher wages and
more mobility for professionals and attracts talent to the industry. Finally, for end users, a functioning quality infrastructure
creates confidence in products and allows products to be compared based on trustworthy third-party information on performance and durability. Quality infrastructure also increases confidence of financial organizations and investors in technology, making more financial resources available for the sector (IRENA 2015b:8-13).

Demand for quality infrastructure services for hydropower in Sub-Saharan Africa

For hydropower projects, the assurance of quality and safety is most important during planning, installation and operation of the plant. For some aspects, a distinction between different sizes of installations needs to be made. Generally, hydropower is a mature technology and manufacturing of components does not pose major difficulties. Nevertheless, the quality of materials and components used needs to be ensured.

During the planning phase, the greatest challenges lie in selecting an adequate site and minimizing the environmental and social impacts of the plant. Detailed studies need to be carried out. Given the potential impacts of hydropower installations – especially large-scale ones – relevant stakeholders should be involved in decision-making processes (International Rivers 2014). Because assessments and plant design require considerable expertise and experience, all important factors are taken into consideration for site selection, plant optimization and minimization of possible negative impacts. For large-scale as well as small-scale hydropower plants, sufficient water flow and water quantity throughout the year are crucial factors (IEA Small Hydro 2017). Correct determination of the water line is important in this context (Interview 4). Water availability may be subject to great variation in the coming years due to climate change-induced changes in precipitation patterns, increased temperatures and more extreme weather events such as droughts and floods. Therefore, for site selection, historical meteorological data should be considered alongside future predictions(International Rivers 2014:51) (see section 2.3. on meteorology). Lacking or not sufficiently accurate hydrological data considerably increases uncertainties for planning (Interview 4).

For the installation of hydropower plants, the quality and safety of the established infrastructure, – for example, dams – are indispensable. In a worst-case scenario, quality shortcomings in hydropower plants can cause a dam to burst, with potentially devastating effects on the surrounding communities and ecosystems in the case of large-scale hydropower plants. Smaller construction and installation errors can have negative economic impacts – for example, due to lower long-term performance or the repairs needed. Additionally, they may compromise the safety of employees and surrounding ecosystems.

Quality aspects are also important during operation and maintenance of hydropower plants. This is highly relevant in Sub-Saharan Africa, where more than half of the region’s energy is generated via hydropower (IRENA 2013:6-9). However, maintenance and monitoring are often neglected (Interview 4). In addition to the long-term functioning of the technology, water quality upstream and downstream of the plant needs to be monitored in order to detect possible negative impacts on the environment (such as altered levels of dissolved oxygen) and take timely measures (Fondriest Environmental Inc. 2016). Moreover, reservoir management is relevant in the context of climate change in order to limit greenhouse gas emissions (Deemer et al. 2016).

The relevant quality infrastructure services are explained in more detail below. Regulation needs and other transversal aspects are addressed in the last part of this section.


Metrological services are important for the quality and safety assurance of hydropower plants throughout the value chain from component manufacturing to operation. The testing equipment used for manufacturing should be calibrated regularly. For site selection, it is important to calibrate the equipment used to determine the water line, flow and quality, to monitor precipitation and to test the soil and foundation. For water quality tests, the national metrology institute can also provide reference material
and act as a proficiency test provider as part of their services in chemical metrology. Calibration is also relevant for the testing equipment used for quality control during construction and installation as well as for the monitoring and testing devices used during operation and maintenance (e. g. flow meters, extensometers). Monitoring may include the performance of the plant, the infrastructure, and environmental impacts such as effects on ecosystems and greenhouse gas emissions from the reservoir.


Relevant standards for hydropower include technical standards for components such as turbines and electrical generators, for plant design and for the installation, commissioning and control of power plants. Specific standards and guidance documents for hydropower are developed by the Institute of Electrical and Electronics Engineers (IEEE) (ANSI 2017). Some relevant standards have also been developed by IEC and ISO. In order to limit the negative environmental impacts of existing  hydropower installations, relevant standards from the ISO 14000 family on environmental management as well as guidance
documents for the Environmental Impact Assessment can be applied.

Several international organizations, such as the World Commission on Dams and the International Hydropower Association, are involved in the development of guidance documents and additional tools for the assessment of social and environmental impacts and the systematic integration of sustainability aspects in hydropower development (Scanlon et al. 2004, Interview 4).

Testing, certification and inspection

Testing services are important throughout the hydropower value chain. Tests can be conducted to ensure the quality of materials and components from the raw material to the finished product. For the planning phase, tests of onsite water conditions need to be carried out. The water line, flow and quality should be analysed (IEA Small Hydro 2017). Long-term precipitation and temperature data, as well as information about extreme weather events which is usually generated by weather stations and meteorological laboratories, provide important information about the viability of a hydropower plant in a potential location. Furthermore, tests have to be conducted during construction and installation to detect possible faults. In order to monitor the composition of concrete throughout the construction process, testing capacities need to be available
locally. For large-scale hydropower projects, on-site laboratories may be set up for this task (Interview 4). During commissioning, the plant has to be tested for safety and correct functioning. Once the plant is in operation, monitoring of water pressure, flow and quality is important in order to be able to detect potential risks for plant performance and negative impacts on the environment and take measures accordingly. Infrastructure monitoring is also necessary: The established volume should be regularly checked for changes in length with an extensometer (Interview 4).

Personnel certification can be relevant for specific service providers such as welders (Bureau Veritas Group 2017).  Certification for components helps to select quality inputs for the power plant. In some countries, certification schemes exist for environmentally friendly hydropower plants and ecological power generation. In the United States, for example, the Low Impact Hydropower Institute provides certification for hydropower installations (LIHI 2017), while in Switzerland, the  naturemade label certifies eco-friendly power generation from hydropower plants, among other sources (Naturemade 2017). However, such certifications are not yet widely used (Interview 4). No information about the application of such labels in Sub-Saharan African countries could be retrieved.

Inspections have to be carried out during the construction and installation of a hydropower plant. Moreover, inspection services are relevant for commissioning – both after the installation has been completed and during operation and maintenance – to ensure that the plant functions correctly.


Accreditation services relevant for hydropower include accreditation of testing and calibration laboratories in accordance with ISO/IEC 17025 (ISO 2005), accreditation of certification bodies in accordance with ISO/IEC 17065 (ISO 2012b) and accreditation of inspection bodies in accordance with ISO/IEC 17020 (ISO 2012a). In the Sub-Saharan African context, accredited laboratory services are important in order to generate accurate information and ensure the reliability of the information needed for planning and monitoring of hydropower projects. Accredited inspection bodies can also ensure quality during installation and carry out competent commissioning of installed plants. The availability of accreditation services nationally or regionally can considerably reduce the cost of the services.

Transversal needs for quality and safety assurance
For the development of renewable energy technologies, support from local authorities is required. This can be achieved via awareness-raising events and initiatives concerning the need for quality and safety in renewable energies, as well as related risks addressed to stakeholders along the value chain, including end users and investors. Moreover, training programmes for EPCs and installers can be supported in order to improve the capabilities of local service providers.

The authorities also have an important role in regulating the development of the renewable energies sector. Commissioning
procedures should be established for the different technologies, and regular or continuous monitoring should be required once the power plant is in operation.

The inclusion of quality and safety criteria in tenders for renewable energy installations is an important step toward promoting quality in the sector, which in turn will foster confidence in new technologies. At the same time, it generates demand for quality infrastructure services and allows national quality infrastructure institutions to sustainably develop additional quality assurance services for renewable energies (Telfser et al. 2016).

Finally, the grid needs to be appropriate for the successful expansion of renewable energies, and grid codes need to be available to ensure secure, safe and economically proper functioning of the electric system. This is particularly relevant for solar photovoltaic, as electricity generation is not constant; here, the grid needs to be sufficiently flexible to allow for the use of renewable energy when it is available.

Further Information


This text is adapted from "Sub-Saharan Africa: Quality Infrastructure for Renewable Energies in the Context of Climate Change" (PTB, 2019. Author: Katharina Telfser) which is part of the publication "Quality Infrastructure for Climate Change Mitigation and Adaptation to Climate Change: Potentials, opportunities and chances in Sub-Saharan Africa." (PTB, 2019).

The sources mentioned in the article are as follows:

This article is part of the "Quality Infrastructure Page" and is managed by the “Physikalisch-Technische Bundesanstalt (PTB)”.

PTB is the National Metrology Institute of Germany and the highest authority for accurate and precise measurements in Germany. It also supports developing and emerging economies in the comprehensive field of quality infrastructure.

PTB logo.png