Difference between revisions of "SPIS Safeguard Water"

From energypedia
***** (***** | *****)
m
***** (***** | *****)
m
Tag: 2017 source edit
 
(45 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{SPIS Banner}}{{Back to SPIS Toolbox}}
+
<div class="grid stretch-items"> <!-- Row1-->
 +
<div class="width-1-3">
 +
{{Arabic Version|Toolbox on SPIS/ar}}
 +
</div>
 +
<div class="width-1-3">
 +
{{French Version|Toolbox on SPIS/fr}}
 +
</div>
 +
<div class="width-1-3">
 +
{{Spanish Version|Toolbox on SPIS/es}}
 +
</div>
 +
</div> <!-- End Row1 -->
  
=== '''<span style="color:#879637;">Module Aim and Orientation</span>''' ===
+
{{SPIS Safeguard Water}} <!-- This banner contains Row 2 -->
[[File:Safeguard Water.jpg|thumb|right|150px|Clean water is a vital resource (Source: Federal Institute for Geosciences and Natural Resources (BGR))]]
 
  
The '''SAFEGUARD WATER''' module aims to give an introduction to groundwater management and the principles of sustainable water management. It further-more reviews the risks and impacts related to an overdraft of groundwater resources. This should sensitize the planner and the future user of a SPIS for a responsible and sustainable utilization of water sources in most cases to be shared with neighboring farmers or other users. Finally, this module provides a practical guideline for the integration of water management into the planning and operation of SPIS. <span class="mw-customtoggle-SPIS3" style="font-size:small; font-weight: bold; display:inline-block; float:right; color: blue"><span class="mw-customtoggletext">read more</span></span>
+
{{Back to SPIS Toolbox}}
<div id="mw-customcollapsible-SPIS3" class="mw-collapsible mw-collapsed">
 
In the '''[[SPIS - Get Informed|GET INFORMED]]''' module the individual components of an SPIS, as well as common system configura-tions are described. Each component has specific maintenance requirements. The ser-vice provider maintaining the SPIS also finds useful information on its promotion in the '''[[SPIS - Promote + Initiate|PROMOTE & INITIATE]]''' module. Further water-related aspects are described in the module '''[[SPIS - Irrigation|IRRIGATION]]'''.
 
  
The '''[[SPIS Finance|FINANCE]]''' module gives an insight into financing SPIS components and configurations in different ways. The costs and efforts for maintaining the SPIS are also considered in the previous modules '''[[SPIS Design|DESIGN]]''' and '''[[SPIS Set Up|SET UP]]'''.
+
{{Safeguard Water Text}} <!-- Contains Rows 4 - 8 -->
  
Population growth and higher living standards, the expansion of agricultural production into dry lands or marginal lands, and the impacts of climate change increase additional need for food, energy and water. The sound financial viability of Solar Powered Irrigation Systems (SPIS) may substitute conventional water extraction and pumping options to save energy and increase agricultural production. Governments and international development agencies support the implementation of SPIS because of several advantages:
 
  
*The use of renewable green energy is CO2-neutral and does not contribute to the emission of greenhouse gases and hence climate change;<br/>
 
*CO2-Certificates can be sold to fossil energy users;
 
*Decentral solar powered energy does not rely on energy networks infrastructure and regular fuel supplies which is interesting especially in less developed rural areas;
 
*Solar powered irrigation can enable agriculture in areas regarded not suitable or profitable and thus increase food production and food security.
 
  
However the previous significant financial hurdle for solar irrigated agriculture from low energy costs for diesel or electricity is diminishing. SPIS saves variable costs for energy production and therefore the incentive for water-efficient technologies and crop patterns is undermined. SPIS technology is on the rise while the abstraction of surface and groundwater for agricultural use around the globe increases and often exceeds the availability of renewable groundwater resources. In India, for example, about 30% of aquifers are considered at critical status<ref>Source: Central Ground Water Board of India 2014. Dynamic groundwater resources of India as of 2011. Faridabad.</ref>. Globally, non-renewable groundwater abstraction contributes nearly to 20%  gross irrigation water demand<ref>Values for 2000, according to Wada et al. 2012. Non-sustainable groundwater sustaining irrigation: A global assessment. In: Water Resources Research 48, W00L06</ref>. In some cases, irrigated agriculture is even practiced through exploitation of fossil groundwater that is not renewable at all.
+
{{SPIS Magic Words}}
 
 
Hence, SPIS might cause or aggravate over-extraction of limited water resources with several side-effects for the environment, economy and society, such as:
 
 
 
*Unsecure water availability through drying wells and springs increase the risk of crop failure;
 
*Aquifer salinization and seawater intrusion with long-term implications for agricultural productivity;
 
*Increased risk of conflicts between different users (e.g. farmers, domestic water supplier, industrial users);
 
*Environmental impacts on groundwater-dependent ecosystems, such as drying up of wetlands and river base flows.
 
 
 
Irrigation requires the integration of principles of sustainable water management. Especially if groundwater regulation and protection in target countries is weak or even absent. Therefore, this module aims to sensitize SPIS developers about fundamental processes of groundwater use and regulation. Practicing sustainable groundwater use is in the self-interest of farmers and stakeholders of the solar powered agricultural development. That includes strict compliance to the mechanisms of water regulation and monitoring, as further detailed in the following chapters.
 
 
 
{| style="width: 100%" cellspacing="1" cellpadding="1" border="0"
 
|-
 
| style="background-color: rgb(225, 229, 205)" |
 
Water is one of the most vital natural re-sources for agriculture. Conservation, protection and sustainable use and management of water represents a global challenge of the 21st century.
 
|}
 
 
 
</div>
 
=== '''<span style="color:#879637;">Chapters</span>''' ===
 
'''1. [[SPIS Toolbox - Understanding Groundwater|Understanding groundwater]]'''<br/>
 
'''2. [[SPIS Toolbox - Analyze Water Management and Regulation|Analyze water management and regulation]]'''<br/>
 
'''3. [[SPIS Toolbox - Analyze Water Extraction|Analyze water extraction]]''' <br/>
 
'''4. [[SPIS Toolbox - Explore Cooperative Water Governance|Explore cooperative water governance]]'''<br/>
 
'''5. [[SPIS Toolbox - Review Potential Risks and Impacts|Review potential risks and impacts]]'''<br/>
 
'''6. [[SPIS Toolbox - Adjust Planning and Operation|Adjust planning and operation]]'''
 
<br/>
 
=== '''<span style="color:#879637;">Tools</span>'''<br/> ===
 
*'''[[:File:SAFEGUARD WATER 01-Water Requirement Tool.xlsx|SAFEGUARD WATER – Water Requirement Tool]]'''
 
*'''[[:File:SAFEGUARD WATER 02- Water Resource Management Checklist.xlsx|SAFEGUARD WATER – Water Resource Management Checklist]]'''
 
<br/>
 
{| style="width: 100%" cellspacing="1" cellpadding="1" border="0"
 
|-
 
| style="background-color: rgb(225, 229, 205)" |
 
*'''[[SPIS Toolbox - Safeguard Water - Further Readings|Further Readings, Links and Tools]]'''
 
*'''[[SPIS Toolbox - Get Informed - Glossary|Glossary]]'''
 
*'''[[SPIS Toolbox - Abbreviations|Abbreviations]]'''
 
|}
 
<br/>
 
=== '''<span style="color:#879637;">References</span>'''<br/> ===
 
  
<references />
+
[[Category:SPIS_Toolbox]]
 
+
[[Category:Water-Energy-Food_Nexus]]
{{SPIS Magic Words}}
+
[[Category:Renewable_Energy]]
 +
[[Category:Sustainability]]
 +
[[Category:Rural_Development]]

Latest revision as of 13:41, 6 December 2021



Module Aim and Orientation

Clean water is a vital resource (Source: Federal Institute for Geosciences and Natural Resources (BGR))

The SAFEGUARD WATER module aims to give an introduction to groundwater management and the principles of sustainable water management. It furthermore reviews the risks and impacts related to an overdraft of groundwater resources. This should sensitize the planner and the future user of a SPIS for a responsible and sustainable utilization of water sources in most cases to be shared with neighboring farmers or other users. Finally, this module provides a practical guideline for the integration of water management into the planning and operation of SPIS.

read more

Population growth and higher living standards, the expansion of agricultural production into dry lands or marginal lands, and the impacts of climate change increase additional need for food, energy and water. The sound financial viability of Solar Powered Irrigation Systems (SPIS) may substitute conventional water extraction and pumping options to save energy and increase agricultural production. Governments and international development agencies support the implementation of SPIS because of several advantages:

  • The use of renewable green energy is CO2-neutral and does not contribute to the emission of greenhouse gases and hence climate change;
  • CO2-Certificates can be sold to fossil energy users;
  • Decentral solar powered energy does not rely on energy networks infrastructure and regular fuel supplies which is interesting especially in less developed rural areas;
  • Solar powered irrigation can enable agriculture in areas regarded not suitable or profitable and thus increase food production and food security

However the previous significant financial hurdle for solar irrigated agriculture from low energy costs for diesel or electricity is diminishing. SPIS saves variable costs for energy production and therefore the incentive for water-efficient technologies and crop patterns is undermined. SPIS technology is on the rise while the abstraction of surface and groundwater for agricultural use around the globe increases and often exceeds the availability of renewable groundwater resources. In India, for example, about 30 percent of aquifers are considered at critical status[1]. Globally, nonrenewable groundwater abstraction contributes nearly to 20% gross irrigation water demand[2]. In some cases, irrigated agriculture is even practiced through exploitation of fossil groundwater that is not renewable at all.

Hence, SPIS might cause or aggravate over-extraction of limited water resources with several side-effects for the environment, economy and society, such as:

  • Unsecure water availability through drying wells and springs increase the risk of crop failure;
  • Aquifer salinization and seawater intrusion with long-term implications for agricultural productivity;
  • Increased risk of conflicts between different users (e.g. farmers, domestic water supplier, industrial users);
  • Environmental impacts on groundwater-dependent ecosystems, such as drying up of wetlands and river base flows.

Irrigation requires the integration of principles of sustainable water management. Especially if groundwater regulation and protection in target countries is weak or even absent. Therefore, this module aims to sensitize SPIS developers about fundamental processes of groundwater use and regulation. Practicing sustainable groundwater use is in the self-interest of farmers and stakeholders of the solar powered agricultural development. That includes strict compliance to the mechanisms of water regulation and monitoring, as further detailed in the following chapters.

Water is one of the most vital natural resources for agriculture. Conservation, protection and sustainable use and management of water represents a global challenge of the 21st century.

Chapters

1. Understanding groundwater
2. Analyze water management and regulation
3. Analyze water extraction
4. Explore cooperative water governance
5. Review potential risks and impacts
6. Adjust planning and operation

Supplementary Tools

Tutorial Videos


Downloadable Posters

PA PosterA1.pdf
PA PosterA1.pdf
PA PosterA1.pdf


Further Readings

  • Cech, T. V. (2010): Principles of Water Resources: History, Development, Management, and Policy. USA: John Wily & Sons.

read more

References

  1. Source: Central Ground Water Board of India 2014. Dynamic groundwater resources of India as of 2011. Faridabad.
  2. Values for 2000, according to Wada et al. 2012. Nonsustainable groundwater sustaining irrigation: A global assessment. In: Water Resources Research 48, W00L06