Make sure you register to our monthly newsletter, it's going out soon! Stay up do date about the latest energy news and our current activities.
Click here to register!

Difference between revisions of "SPIS Toolbox - Solar - powered Irrigation Systems"

From energypedia
***** (***** | *****)
(Created page with " {{SPIS Banner}} == '''<span style="color:#879637">Solar - powered Irrigation Systems</span>''' == Using solar energy for irrigation makes a lot of sense. First, irrigation ...")
 
***** (***** | *****)
Line 2: Line 2:
 
{{SPIS Banner}}
 
{{SPIS Banner}}
  
== '''<span style="color:#879637">Solar - powered Irrigation Systems</span>''' ==
+
== '''<span style="color:#879637">Solar - Powered Irrigation Systems</span>''' ==
  
 
Using solar energy for irrigation makes a lot of sense. First, irrigation is often implemented in rural areas with poor access to reliable electricity or fossil fuel supplies. Second, solar radiation is an abundant resource in many developing countries where irrigation is essential to food security and international trade. Finally, Solar-Powered Irrigation Systems (SPIS) passively self-regulate because the volume of water pumped increases on clear hot days when plants need more water, and vice versa. It is important to note that a SPIS is more than just a solar pump used for irrigation. Panels, pumps and irrigation systemsare designed on the basis of water availability and local crop water requirements. SPIS is a system where the different components, from pump to plant, are integrated and harmonized.
 
Using solar energy for irrigation makes a lot of sense. First, irrigation is often implemented in rural areas with poor access to reliable electricity or fossil fuel supplies. Second, solar radiation is an abundant resource in many developing countries where irrigation is essential to food security and international trade. Finally, Solar-Powered Irrigation Systems (SPIS) passively self-regulate because the volume of water pumped increases on clear hot days when plants need more water, and vice versa. It is important to note that a SPIS is more than just a solar pump used for irrigation. Panels, pumps and irrigation systemsare designed on the basis of water availability and local crop water requirements. SPIS is a system where the different components, from pump to plant, are integrated and harmonized.

Revision as of 13:53, 2 June 2017

Banner header.svg

Introduction

The Toolbox on Solar Powered Irrigation Systems (SPIS) is designed to enable advisors, service providers and practitioners in the field of solar irrigation to provide broad hands-on guidance to end-users, policy-makers and financiers. Risks related to system efficiency, financial viability and the unsustainable use of water resources can thus be minimized. The Toolbox comprises informative modules supplemented with user-friendly software tools (calculations sheets, checklists, guidelines). read more

Modules and tools touch upon:

  • assessing the water requirements,
  • comparing the financial viability,
  • determining farm profitability and payback of investment in SPIS,
  • sustainably design and maintain a SPIS,
  • highlight critical workmanship quality aspects,
  • and many more.

Solar - Powered Irrigation Systems

Using solar energy for irrigation makes a lot of sense. First, irrigation is often implemented in rural areas with poor access to reliable electricity or fossil fuel supplies. Second, solar radiation is an abundant resource in many developing countries where irrigation is essential to food security and international trade. Finally, Solar-Powered Irrigation Systems (SPIS) passively self-regulate because the volume of water pumped increases on clear hot days when plants need more water, and vice versa. It is important to note that a SPIS is more than just a solar pump used for irrigation. Panels, pumps and irrigation systemsare designed on the basis of water availability and local crop water requirements. SPIS is a system where the different components, from pump to plant, are integrated and harmonized.

Operating Principle

The operating principle of an SPIS is simple. A solar generator provides electricity for an electric motor pump, which delivers water either directly into an irrigation system or to an elevated reservoir. Fundamental design criteria for SPIS include minimum maintenance, maximum reliability as well as resource efficiency. A specific characteristic of SPIS is the fact that generally a battery back-up is not required. This is an advantage since batteries are maintenance-intensive, costly and require regular replacement.

SPIS components

The individual components of a SPIS are introduced in the following sections. The table below shows that, depending on site-specific conditions and capacities of the farmer, different technology options are available. The components and alternative technologies can be combined with each other in a wide range of ways, but some configurations are better depending on the situation in the field.