Difference between revisions of "Climate-Smart Agrifood Systems: Links"
From energypedia
***** (***** | *****) (→Drying) |
***** (***** | *****) |
||
Line 17: | Line 17: | ||
= Application<br/> = | = Application<br/> = | ||
− | |||
− | |||
== Pumping and Irrigation<br/> == | == Pumping and Irrigation<br/> == | ||
Line 41: | Line 39: | ||
*[https://poweringag.org/innovators/micro-solar-utilities-small-scale-irrigation Micro-Solar Utilities for Small-Scale Irrigation]<br/> | *[https://poweringag.org/innovators/micro-solar-utilities-small-scale-irrigation Micro-Solar Utilities for Small-Scale Irrigation]<br/> | ||
*[[Solar Powered Irrigation Systems in Egypt|Solar Powered Irrigation Systems in Egypt]]<br/> | *[[Solar Powered Irrigation Systems in Egypt|Solar Powered Irrigation Systems in Egypt]]<br/> | ||
− | *[[ | + | *[[Toolbox on SPIS|SPIS Toolbox]]<br/> |
*[[Solar Powered Irrigation Systems - Technology, Economy, Impacts|Solar-powered irrigation systems – Technology, Economy, Impacts]]<br/> | *[[Solar Powered Irrigation Systems - Technology, Economy, Impacts|Solar-powered irrigation systems – Technology, Economy, Impacts]]<br/> | ||
− | |||
== Cooling<br/> == | == Cooling<br/> == | ||
Line 54: | Line 51: | ||
*[https://poweringag.org/innovators/sunchill-solar-cooling-horticultural-preservation SunChill Solar Cooling for Horticultural Preservation]<br/> | *[https://poweringag.org/innovators/sunchill-solar-cooling-horticultural-preservation SunChill Solar Cooling for Horticultural Preservation]<br/> | ||
*[[Solar Milk Cooling with Insulated Milk Cans|Solar Milk Cooling with Insulated Milk Cans]]<br/> | *[[Solar Milk Cooling with Insulated Milk Cans|Solar Milk Cooling with Insulated Milk Cans]]<br/> | ||
− | |||
== Drying<br/> == | == Drying<br/> == | ||
Line 64: | Line 60: | ||
*[[Solar Drying|Drying Chili Peppers with Solar Dryers in Peru]]<br/> | *[[Solar Drying|Drying Chili Peppers with Solar Dryers in Peru]]<br/> | ||
− | == Other Type of Food Processing <br/> == | + | == Other Type of Food Processing<br/> == |
*[https://poweringag.org/innovators/field-evaluation-passive-aeration-system-aquaculture Field Evaluation of a Passive Aeration System for Aquaculture]<br/> | *[https://poweringag.org/innovators/field-evaluation-passive-aeration-system-aquaculture Field Evaluation of a Passive Aeration System for Aquaculture]<br/> | ||
Line 71: | Line 67: | ||
*[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | *[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | ||
+ | <br/> | ||
= Energy Efficiency<br/> = | = Energy Efficiency<br/> = | ||
Line 80: | Line 77: | ||
*[[Energy Auditing|Energy Auditing]]<br/> | *[[Energy Auditing|Energy Auditing]]<br/> | ||
− | = Energy Source<br/> = | + | = Energy Source-Solar Power<br/> = |
− | == | + | ==Introduction<br/> == |
− | *[[Solar Energy| | + | *[[Solar Energy | Solar Energy]]<br/> |
*[https://globalsolaratlas.info/about/introduction Global Solar Atlas]<br/> | *[https://globalsolaratlas.info/about/introduction Global Solar Atlas]<br/> | ||
*[[Photovoltaic (PV)|Photovoltaic (PV)]]<br/> | *[[Photovoltaic (PV)|Photovoltaic (PV)]]<br/> |
Revision as of 07:42, 14 October 2019
Sustainable Energy for Food
- Introducing the Energy-Agriculture Nexus
- Energy Inputs in Agriculture
- Greenhouse Gas Emissions from Agriculture
- Energy for Agriculture
- Energy Needs in Smallholder Agriculture
- Climate Smarte Agriculture
- Renewable Energy Resources in Powering Agriculture
- Energy for Processing Food
- E-Learning: Free Online edX CourseSustainable Development
- SDGAcademyX-Free online courses from SDG Academy
- Nexus Case Studies
Application
Pumping and Irrigation
- Irrigation Types
- Drip Irrigation
- Surface Irrigation
- Sprinkler Irrigation
- Battery Based System Pump
- Basics and SWOT Analysis of SPIS
- Solar Powered Water Pump
- Water Powered Water Pumps
- Sustainable Groundwater Extraction
- Solar Powered Pumps for Improved Irrigation
- A Hydroponic Green Farming Initiative
- Low-Cost Pay-Per-Use Irrigation using Solar Trolley Systems
- Affordable, High-Performance Solar Irrigation for Smallholder Farmers
- PV-Integrated Drip Irrigation and Fertigation Systems
- Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers
- Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities
- Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Irrigation Systems in Egypt
- SPIS Toolbox
- Solar-powered irrigation systems – Technology, Economy, Impacts
Cooling
- Evaporative Cooling Devices
- Green Cooling
- Biogas Milk Chilling to Increase Productivity and Incomes of Dairy Farmers
- SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- SunChill Solar Cooling for Horticultural Preservation
- Solar Milk Cooling with Insulated Milk Cans
Drying
- Solar Drying
- Biogas Powered Infrared Coffee Dryer
- Modern Solar Drying in Afghanistan
- Drying Oregano with Solar Dryers in Peru
- Drying Chili Peppers with Solar Dryers in Peru
Other Type of Food Processing
- Field Evaluation of a Passive Aeration System for Aquaculture
- Agro-Processing Power Stations
- Solar-Powered Oil Press for Sesame Seed
- Tomato Processing by Solar Energy
Energy Efficiency
- Energy Efficiency Introduction
- Energy Efficiency in Powering Agriculture
- Cogeneration
- Energy Efficiency Potentials in the Kenyan Tea Sector
- Energy Auditing
Energy Source-Solar Power
Introduction
- Solar Energy
- Global Solar Atlas
- Photovoltaic (PV)
- Solar Thermal Technologies
- Solar Powered Irrigation Solar powered water pumps
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Pumps for Improved Irrigation
- Hydroponic Green Farming Initiative
- Low-Cost Pay-Per-Use Irrigation Using Solar Trolley Systems
- Affordable, High-Performance Solar Irrigation for Smallholder Farmers
- PV-Integrated Drip Irrigation and Fertigation Systems
- Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers
- Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Irrigation Systems in Egypt
- SPIS Toolbox
- Solar-powered irrigation systems – Technology, Economy, Impacts
- Photovoltaic|(PV) Pumping Systems for Irrigation
- Solar Powered Cooling SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- SunChill Solar Cooling for Horticultural Preservation
- Solar Milk Cooling with Insulated Milk Cans
- Solar Powered Drying Solar Drying
- Biogas Powered Infrared Coffee Dryer
- Modern Solar Drying in Afghanistan
- Drying Oregano with Solar Dryers in Peru
- Drying Chili Peppers with Solar Dryers in Peru
- Other Solar Powered Applications Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities
- Solar Agro-Processing Power Stations
- Private Sector Financed Community Solar Microgrids and Agricultural Accelerators
- Field Evaluation of a Passive Aeration System for Aquaculture
- Smart Grid on Main Street: Electricity and Value-added Processing for Agricultural Goods
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
Biomass
- Biogas in Powering Agriculture
- Bioenergy Resources and Technologies
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
- Building Markets for Efficient Biomass Power Provision
- Biomass-Powered Thermal Processing of Ethiopian Bamboo
- Biogas Milk Chilling for Dairy Farmers
- Biogas-Powered Evaporative Cooling for the Dairy Industry
- Biomass Potential in the Indonesian Agroindustry
- Biogas Technology in Vietnam
- Biogas for the Small Holdings in Kerala, India
Wind and Hydro Power
- Hydropower in Powering Agriculture
- Barsha Pump – Aqysta Holding BV – A Water Powered Water Pump
- Wind Energy in Powering Agriculture
- Small Wind Energy Devices Can Provide Lowest Energy Prices
- Financing and Business Models Agri-Food Enterprises in the Energy-Food Nexus
- Business Plan for Solar Processing of Tomatoes
- Small Scale Oil Seeds Processing
- Techno-Economic Analysis in the Agricultural Value Chain
- Comparative Financial Analysis of Irrigation Solutions
- Policies and Regulations Policies and Regulations for the Energy-Agriculture Nexus
- Comparison of various Policy Tools for Promoting Renewable Energies
- Bioenergy Decision Support Tool
- Value Chain Dairy Food Safety Laboratory and Milk Quality Improvement Program (College of Agriculture and Life Sciences Cornell University)
- Clean Energy Solutions for Milk Cooling in India and Kenya
- Biogas Milk Chilling for Dairy Farmers
- Biogas-Powered Evaporative Cooling for the Dairy Industry
- SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- Solar Milk Cooling with Insulated Milk Cans
- Rice Ricepedia
- IRRI Axial Flow Thresher
- RiceHub
- Solar Agro-Processing Power Stations
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
- Costs and Benefits of Clean Energy Technologies in the Philippines’ Rice Value Chain
- Fruit & Vegetables Waste Stitching – Circular Economy
- SunChill Solar Cooling for Horticultural Preservation
- Tomato Processing by Solar Energy
- Water and Food Security – FAO
- Water Use in Agriculture FAO Water– The Importance of Sustainable Water Management
- Water in Agriculture World Bank
- Do Solar Powered Irrigation Systems (SPIS) Contribute to the Overexploitation of Groundwater Reserves