Difference between revisions of "Climate-Smart Agrifood Systems: Links"
From energypedia
***** (***** | *****) m |
***** (***** | *****) m |
||
Line 1: | Line 1: | ||
− | <span class="link3">[[ | + | |
− | {{Back to PA portal2}}<br/> | + | <span class="link3">[[Systemes agroalimentaires respectueux du climat : Liens|►French Version]]</span> {{Back to PA portal2}}<br/> |
= <span style="color:#00A3AD">Sustainable Energy for Food</span><br/> = | = <span style="color:#00A3AD">Sustainable Energy for Food</span><br/> = | ||
Line 24: | Line 24: | ||
== <span style="color:#00A3AD">Pumping and Irrigation</span><br/> == | == <span style="color:#00A3AD">Pumping and Irrigation</span><br/> == | ||
− | *[[ | + | *[[Powering_Agriculture:_Irrigation|Irrigation Types]]<br/> |
− | *[[ | + | *[[Drip_Irrigation|Drip Irrigation]]<br/> |
− | *[[ | + | *[[Surface_Irrigation|Surface Irrigation]]<br/> |
*[[Sprinkler Irrigation|Sprinkler Irrigation]]<br/> | *[[Sprinkler Irrigation|Sprinkler Irrigation]]<br/> | ||
*[[Solar Powered Irrigation Systems in Egypt|Battery Based System Pump]]<br/> | *[[Solar Powered Irrigation Systems in Egypt|Battery Based System Pump]]<br/> | ||
Line 33: | Line 33: | ||
*[https://securingwaterforfood.org/innovators/the-barsha-pump-aqysta Water Powered Water Pumps]<br/> | *[https://securingwaterforfood.org/innovators/the-barsha-pump-aqysta Water Powered Water Pumps]<br/> | ||
*[[SPIS Safeguard Water|Sustainable Groundwater Extraction]]<br/> | *[[SPIS Safeguard Water|Sustainable Groundwater Extraction]]<br/> | ||
− | *[ | + | *[[Solar-Powered_Pumps_for_Improved_Irrigation|Solar Powered Pumps for Improved Irrigation]]<br/> |
− | *[ | + | *[[A_Hydroponic_Green_Farming_Initiative|A Hydroponic Green Farming Initiative]]<br/> |
− | *[ | + | *[[Low-Cost_Pay-Per-Use_Irrigation_Using_Solar_Trolley_Systems|Low-Cost Pay-Per-Use Irrigation using Solar Trolley Systems]]<br/> |
− | *[ | + | *[[Affordable,_High-Performance_Solar_Irrigation_for_Smallholder_Farmers|Affordable, High-Performance Solar Irrigation for Smallholder Farmers]]<br/> |
− | *[ | + | *[[PV-Integrated_Drip_Irrigation_and_Fertigation_Systems|PV-Integrated Drip Irrigation and Fertigation Systems]]<br/> |
− | *[ | + | *[[Scaling_the_Distribution_of_Tailored_Agro-Solar_Irrigation_Kits_to_Smallholder_Farmers|Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers]]<br/> |
− | *[ | + | *[[Renewable_Microgrids_for_Off-Grid_Fish_Hatcheries_and_Surrounding_Communities|Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities]]<br/> |
− | *[ | + | *[[Sunflower_Pump:_Asset-Financed_Solar_Irrigation_Pumps_for_Smallholder_Farmers|Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers]]<br/> |
− | *[ | + | *[[Micro-Solar_Utilities_for_Small-Scale_Irrigation|Micro-Solar Utilities for Small-Scale Irrigation]]<br/> |
− | *[[ | + | *[[Solar_Powered_Irrigation_Systems_in_Egypt|Solar Powered Irrigation Systems in Egypt]]<br/> |
− | *[[ | + | *[[Toolbox_on_SPIS|SPIS Toolbox]]<br/> |
− | *[[ | + | *[[Solar_Powered_Irrigation_Systems_-_Technology,_Economy,_Impacts|Solar-powered irrigation systems – Technology, Economy, Impacts]]<br/> |
== <span style="color:#00A3AD">Cooling</span><br/> == | == <span style="color:#00A3AD">Cooling</span><br/> == | ||
Line 50: | Line 50: | ||
*[[Evaporative Cooling Devices|Evaporative Cooling Devices]]<br/> | *[[Evaporative Cooling Devices|Evaporative Cooling Devices]]<br/> | ||
*[[Cooling|Green Cooling]]<br/> | *[[Cooling|Green Cooling]]<br/> | ||
− | *[ | + | *[[Biogas_Milk_Chilling_to_Increase_Productivity_and_Incomes_of_Dairy_Farmers|Biogas Milk Chilling to Increase Productivity and Incomes of Dairy Farmers]]<br/> |
− | *[ | + | *[[SunDanzer:_Solar-Powered_Refrigeration_for_Kenyan_Dairy_Farms|SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms]]<br/> |
− | *[ | + | *[[Reducing_Milk_Spoilage_through_Solar_Powered_Milk_Chilling|Reducing Milk Spoilage through Solar-Powered Chilling]]<br/> |
− | *[ | + | *[[SunChill:_Solar_Cooling_for_Horticultural_Preservation|SunChill Solar Cooling for Horticultural Preservation]]<br/> |
− | *[[ | + | *[[Solar_Milk_Cooling_with_Insulated_Milk_Cans|Solar Milk Cooling with Insulated Milk Cans]]<br/> |
== <span style="color:#00A3AD">Drying</span><br/> == | == <span style="color:#00A3AD">Drying</span><br/> == | ||
*[[Solar Drying|Solar Drying]]<br/> | *[[Solar Drying|Solar Drying]]<br/> | ||
− | *[ | + | *[[Improving_Coffee_Production_and_Quality_Using_Infrared_Technology|Biogas Powered Infrared Coffee Dryer]]<br/> |
− | *[[ | + | *[[Modern_Solar_Drying_in_Afghanistan|Modern Solar Drying in Afghanistan]]<br/> |
− | *[[ | + | *[[Solar_Drying|Drying Oregano with Solar Dryers in Peru]]<br/> |
− | *[[ | + | *[[Solar_Drying|Drying Chili Peppers with Solar Dryers in Peru]]<br/> |
<br/> | <br/> | ||
Line 68: | Line 68: | ||
== <span style="color:#00A3AD">Other Types of Food Processing</span><br/> == | == <span style="color:#00A3AD">Other Types of Food Processing</span><br/> == | ||
− | *[ | + | *[[Field_Evaluation_of_a_Passive_Aeration_System_for_Aquaculture|Field Evaluation of a Passive Aeration System for Aquaculture]]<br/> |
− | *[ | + | *[[Solar_Agro-Processing_Power_Stations|Agro-Processing Power Stations]]<br/> |
*[[Solar-Powered Oil Press for Sesame Seed|Solar-Powered Oil Press for Sesame Seed]]<br/> | *[[Solar-Powered Oil Press for Sesame Seed|Solar-Powered Oil Press for Sesame Seed]]<br/> | ||
*[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | *[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | ||
− | |||
− | |||
<br/> | <br/> | ||
Line 100: | Line 98: | ||
*[[#.23https:.2F.2Fenergypedia.info.2Fwiki.2FSPIS_Toolbox_-_Solar_-_powered_Irrigation_Systems|Solar powered water pumps]]<br/> | *[[#.23https:.2F.2Fenergypedia.info.2Fwiki.2FSPIS_Toolbox_-_Solar_-_powered_Irrigation_Systems|Solar powered water pumps]]<br/> | ||
*[[Micro-Solar Utilities for Small-Scale Irrigation|Micro-Solar Utilities for Small-Scale Irrigation]]<br/> | *[[Micro-Solar Utilities for Small-Scale Irrigation|Micro-Solar Utilities for Small-Scale Irrigation]]<br/> | ||
− | *[ | + | *[[Solar-Powered_Pumps_for_Improved_Irrigation|Solar Powered Pumps for Improved Irrigation]]<br/> |
− | *[ | + | *[[A_Hydroponic_Green_Farming_Initiative|Hydroponic Green Farming Initiative]]<br/> |
− | *[ | + | *[[Low-Cost_Pay-Per-Use_Irrigation_Using_Solar_Trolley_Systems|Low-Cost Pay-Per-Use Irrigation Using Solar Trolley Systems]]<br/> |
− | *[ | + | *[[Affordable,_High-Performance_Solar_Irrigation_for_Smallholder_Farmers|Affordable, High-Performance Solar Irrigation for Smallholder Farmers]]<br/> |
− | *[ | + | *[[PV-Integrated_Drip_Irrigation_and_Fertigation_Systems|PV-Integrated Drip Irrigation and Fertigation Systems]]<br/> |
− | *[ | + | *[[Scaling_the_Distribution_of_Tailored_Agro-Solar_Irrigation_Kits_to_Smallholder_Farmers|Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers]]<br/> |
− | *[ | + | *[[Sunflower_Pump:_Asset-Financed_Solar_Irrigation_Pumps_for_Smallholder_Farmers|Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers]]<br/> |
− | *[ | + | *[[Micro-Solar_Utilities_for_Small-Scale_Irrigation|Micro-Solar Utilities for Small-Scale Irrigation]]<br/> |
*[[Solar Powered Irrigation Systems in Egypt|Solar Powered Irrigation Systems in Egypt]]<br/> | *[[Solar Powered Irrigation Systems in Egypt|Solar Powered Irrigation Systems in Egypt]]<br/> | ||
*[[Toolbox on SPIS|SPIS Toolbox]]<br/> | *[[Toolbox on SPIS|SPIS Toolbox]]<br/> | ||
Line 115: | Line 113: | ||
== <span style="color:#00A3AD">Solar Powered Cooling</span><br/> == | == <span style="color:#00A3AD">Solar Powered Cooling</span><br/> == | ||
− | *[ | + | *[[SunDanzer:_Solar-Powered_Refrigeration_for_Kenyan_Dairy_Farms|SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms]]<br/> |
− | *[ | + | *[[Reducing_Milk_Spoilage_through_Solar_Powered_Milk_Chilling|Reducing Milk Spoilage through Solar-Powered Chilling]]<br/> |
− | *[ | + | *[[SunChill:_Solar_Cooling_for_Horticultural_Preservation|SunChill Solar Cooling for Horticultural Preservation]]<br/> |
− | *[[ | + | *[[Solar_Milk_Cooling_with_Insulated_Milk_Cans|Solar Milk Cooling with Insulated Milk Cans]]<br/> |
== <span style="color:#00A3AD">Solar Powered Drying</span><br/> == | == <span style="color:#00A3AD">Solar Powered Drying</span><br/> == | ||
*[[Solar Drying|Solar Drying]]<br/> | *[[Solar Drying|Solar Drying]]<br/> | ||
− | *[ | + | *[[Improving_Coffee_Production_and_Quality_Using_Infrared_Technology|Biogas Powered Infrared Coffee Dryer]]<br/> |
*[[Modern Solar Drying in Afghanistan|Modern Solar Drying in Afghanistan]]<br/> | *[[Modern Solar Drying in Afghanistan|Modern Solar Drying in Afghanistan]]<br/> | ||
*[[Solar Drying|Drying Oregano with Solar Dryers in Peru]]<br/> | *[[Solar Drying|Drying Oregano with Solar Dryers in Peru]]<br/> | ||
Line 130: | Line 128: | ||
== <span style="color:#00A3AD">Other Solar Powered Applications</span><br/> == | == <span style="color:#00A3AD">Other Solar Powered Applications</span><br/> == | ||
− | *[ | + | *[[Renewable_Microgrids_for_Off-Grid_Fish_Hatcheries_and_Surrounding_Communities|Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities]]<br/> |
− | *[ | + | *[[Solar_Agro-Processing_Power_Stations|Solar Agro-Processing Power Stations]]<br/> |
− | *[ | + | *[[Private_Sector_Financed_Community_Solar_Microgrids_and_Agricultural_Accelerators|Private Sector Financed Community Solar Microgrids and Agricultural Accelerators]]<br/> |
− | *[ | + | *[[Field_Evaluation_of_a_Passive_Aeration_System_for_Aquaculture|Field Evaluation of a Passive Aeration System for Aquaculture]]<br/> |
− | *[ | + | *[[Smart_Grid_on_Main_Street:_Electricity_and_Value-added_Processing_for_Agricultural_Goods|Smart Grid on Main Street: Electricity and Value-added Processing for Agricultural Goods]]<br/> |
− | *[ | + | *[[Biomass_and_Solar_PV_Hybrid_Minigrids_for_Off-Grid_Farming_Communities|Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities]]<br/> |
<br/> | <br/> | ||
Line 143: | Line 141: | ||
*[[Biogas in Powering Agriculture|Biogas in Powering Agriculture]]<br/> | *[[Biogas in Powering Agriculture|Biogas in Powering Agriculture]]<br/> | ||
*[[Bioenergy Resources and Technologies|Bioenergy Resources and Technologies]]<br/> | *[[Bioenergy Resources and Technologies|Bioenergy Resources and Technologies]]<br/> | ||
− | *[ | + | *[[Biomass_and_Solar_PV_Hybrid_Minigrids_for_Off-Grid_Farming_Communities|Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities]]<br/> |
− | *[ | + | *[[Building_Markets_for_Efficient_Biomass_Power_Provision|Building Markets for Efficient Biomass Power Provision]]<br/> |
− | *[ | + | *[[Biomass-Powered_Thermal_Processing_of_Ethiopian_Bamboo|Biomass-Powered Thermal Processing of Ethiopian Bamboo]]<br/> |
− | *[ | + | *[[Biogas_Milk_Chilling_to_Increase_Productivity_and_Incomes_of_Dairy_Farmers|Biogas Milk Chilling for Dairy Farmers]]<br/> |
− | *[ | + | *[[Biogas-Powered_Evaporative_Cooling_for_Uganda’s_Dairy_Industry|Biogas-Powered Evaporative Cooling for the Dairy Industry]]<br/> |
− | *[[ | + | *[[Biomass_Potential_in_the_Indonesian_Agroindustry|Biomass Potential in the Indonesian Agroindustry]]<br/> |
*[[Biogas Technology in Vietnam|Biogas Technology in Vietnam]]<br/> | *[[Biogas Technology in Vietnam|Biogas Technology in Vietnam]]<br/> | ||
*[[Biogas - A Viable Energy Source for the Small Holdings in Kerala, India|Biogas for the Small Holdings in Kerala, India]]<br/> | *[[Biogas - A Viable Energy Source for the Small Holdings in Kerala, India|Biogas for the Small Holdings in Kerala, India]]<br/> | ||
Line 192: | Line 190: | ||
*[https://foodsafety.foodscience.cornell.edu/mqip/information-sheets/ Food Safety Laboratory and Milk Quality Improvement Program (College of Agriculture and Life Sciences Cornell University)]<br/> | *[https://foodsafety.foodscience.cornell.edu/mqip/information-sheets/ Food Safety Laboratory and Milk Quality Improvement Program (College of Agriculture and Life Sciences Cornell University)]<br/> | ||
*[[Clean Energy Solutions for Milk Cooling in India and Kenya|Clean Energy Solutions for Milk Cooling in India and Kenya]]<br/> | *[[Clean Energy Solutions for Milk Cooling in India and Kenya|Clean Energy Solutions for Milk Cooling in India and Kenya]]<br/> | ||
− | *[ | + | *[[Biogas_Milk_Chilling_to_Increase_Productivity_and_Incomes_of_Dairy_Farmers|Biogas Milk Chilling for Dairy Farmers]]<br/> |
− | *[ | + | *[[Biogas-Powered_Evaporative_Cooling_for_Uganda’s_Dairy_Industry|Biogas-Powered Evaporative Cooling for the Dairy Industry]]<br/> |
− | *[ | + | *[[SunDanzer:_Solar-Powered_Refrigeration_for_Kenyan_Dairy_Farms|SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms]]<br/> |
− | *[ | + | *[[Reducing_Milk_Spoilage_through_Solar_Powered_Milk_Chilling|Reducing Milk Spoilage through Solar-Powered Chilling]]<br/> |
− | *[[ | + | *[[Solar_Milk_Cooling_with_Insulated_Milk_Cans|Solar Milk Cooling with Insulated Milk Cans]]<br/> |
== <span style="color:#00A3AD">Rice</span><br/> == | == <span style="color:#00A3AD">Rice</span><br/> == | ||
Line 203: | Line 201: | ||
*[http://www.knowledgebank.irri.org/step-by-step-production/postharvest/harvesting/harvesting-operations/threshing/machine-threshing/using-an-irri-axial-flow-thresher IRRI Axial Flow Thresher]<br/> | *[http://www.knowledgebank.irri.org/step-by-step-production/postharvest/harvesting/harvesting-operations/threshing/machine-threshing/using-an-irri-axial-flow-thresher IRRI Axial Flow Thresher]<br/> | ||
*[http://www.ricehub.org RiceHub]<br/> | *[http://www.ricehub.org RiceHub]<br/> | ||
− | *[ | + | *[[Solar_Agro-Processing_Power_Stations|Solar Agro-Processing Power Stations]]<br/> |
− | *[ | + | *[[Biomass_and_Solar_PV_Hybrid_Minigrids_for_Off-Grid_Farming_Communities|Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities]]<br/> |
− | *[ | + | *[[:File:Costs_and_Benefits_of_Clean_Energy_Technologies_in_the_Philippines'_Rice_Value_Chain.pdf|Costs and Benefits of Clean Energy Technologies in the Philippines’ Rice Value Chain]]<br/> |
== <span style="color:#00A3AD">Fruit & Vegetables</span><br/> == | == <span style="color:#00A3AD">Fruit & Vegetables</span><br/> == | ||
*[https://securingwaterforfood.org/innovators/circular-economy-waste-stichting Waste Stitching – Circular Economy]<br/> | *[https://securingwaterforfood.org/innovators/circular-economy-waste-stichting Waste Stitching – Circular Economy]<br/> | ||
− | *[ | + | *[[SunChill:_Solar_Cooling_for_Horticultural_Preservation|SunChill Solar Cooling for Horticultural Preservation]]<br/> |
*[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | *[[Tomato Processing by Solar Energy|Tomato Processing by Solar Energy]]<br/> | ||
*[http://www.fao.org/3/x0262e/x0262e01.htm Water and Food Security – FAO]<br/> | *[http://www.fao.org/3/x0262e/x0262e01.htm Water and Food Security – FAO]<br/> | ||
Line 232: | Line 230: | ||
*[https://www.sida.se/English/partners/methods-materials/gender-tool-box/?id=138563 Gender Toolbox]<br/> | *[https://www.sida.se/English/partners/methods-materials/gender-tool-box/?id=138563 Gender Toolbox]<br/> | ||
+ | [[Category:Powering_Agriculture]] | ||
[[Category:Water-Energy-Food_Nexus]] | [[Category:Water-Energy-Food_Nexus]] | ||
− |
Revision as of 10:38, 14 October 2020
►Back to the WE4F Portal |
Sustainable Energy for Food
- Climate-Smart Agriculture 101
- Introducing the Energy-Agriculture Nexus
- Energy Inputs in Agriculture
- Greenhouse Gas Emissions from Agriculture
- Energy for Agriculture
- Energy Needs in Smallholder Agriculture
- Climate Smarte Agriculture
- Renewable Energy Resources in Powering Agriculture
- Energy for Processing Food
- E-Learning: Free Online edX CourseSustainable Development
- SDGAcademyX-Free online courses from SDG Academy
- Nexus Case Studies
- Massive Open Online Course: Powering Agriculture
Application
Pumping and Irrigation
- Irrigation Types
- Drip Irrigation
- Surface Irrigation
- Sprinkler Irrigation
- Battery Based System Pump
- Basics and SWOT Analysis of SPIS
- Solar Powered Water Pump
- Water Powered Water Pumps
- Sustainable Groundwater Extraction
- Solar Powered Pumps for Improved Irrigation
- A Hydroponic Green Farming Initiative
- Low-Cost Pay-Per-Use Irrigation using Solar Trolley Systems
- Affordable, High-Performance Solar Irrigation for Smallholder Farmers
- PV-Integrated Drip Irrigation and Fertigation Systems
- Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers
- Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities
- Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Irrigation Systems in Egypt
- SPIS Toolbox
- Solar-powered irrigation systems – Technology, Economy, Impacts
Cooling
- Evaporative Cooling Devices
- Green Cooling
- Biogas Milk Chilling to Increase Productivity and Incomes of Dairy Farmers
- SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- SunChill Solar Cooling for Horticultural Preservation
- Solar Milk Cooling with Insulated Milk Cans
Drying
- Solar Drying
- Biogas Powered Infrared Coffee Dryer
- Modern Solar Drying in Afghanistan
- Drying Oregano with Solar Dryers in Peru
- Drying Chili Peppers with Solar Dryers in Peru
Other Types of Food Processing
- Field Evaluation of a Passive Aeration System for Aquaculture
- Agro-Processing Power Stations
- Solar-Powered Oil Press for Sesame Seed
- Tomato Processing by Solar Energy
Energy Efficiency
- Energy Efficiency Introduction
- Energy Efficiency in Powering Agriculture
- Cogeneration
- Energy Efficiency Potentials in the Kenyan Tea Sector
- Energy Auditing
Energy Source-Solar Power
Introduction
Solar Powered Irrigation
- Solar powered water pumps
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Pumps for Improved Irrigation
- Hydroponic Green Farming Initiative
- Low-Cost Pay-Per-Use Irrigation Using Solar Trolley Systems
- Affordable, High-Performance Solar Irrigation for Smallholder Farmers
- PV-Integrated Drip Irrigation and Fertigation Systems
- Scaling the Distribution of Tailored Agro-Solar Irrigation Kits to Smallholder Farmers
- Sunflower Pump: Asset-Financed Solar Irrigation Pumps for Smallholder Farmers
- Micro-Solar Utilities for Small-Scale Irrigation
- Solar Powered Irrigation Systems in Egypt
- SPIS Toolbox
- Solar-powered irrigation systems – Technology, Economy, Impacts
- Photovoltaic|(PV) Pumping Systems for Irrigation
Solar Powered Cooling
- SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- SunChill Solar Cooling for Horticultural Preservation
- Solar Milk Cooling with Insulated Milk Cans
Solar Powered Drying
- Solar Drying
- Biogas Powered Infrared Coffee Dryer
- Modern Solar Drying in Afghanistan
- Drying Oregano with Solar Dryers in Peru
- Drying Chili Peppers with Solar Dryers in Peru
Other Solar Powered Applications
- Renewable Microgrids for Off-Grid Fish Hatcheries and Surrounding Communities
- Solar Agro-Processing Power Stations
- Private Sector Financed Community Solar Microgrids and Agricultural Accelerators
- Field Evaluation of a Passive Aeration System for Aquaculture
- Smart Grid on Main Street: Electricity and Value-added Processing for Agricultural Goods
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
Energy Source-Biomass/Biogas
- Biogas in Powering Agriculture
- Bioenergy Resources and Technologies
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
- Building Markets for Efficient Biomass Power Provision
- Biomass-Powered Thermal Processing of Ethiopian Bamboo
- Biogas Milk Chilling for Dairy Farmers
- Biogas-Powered Evaporative Cooling for the Dairy Industry
- Biomass Potential in the Indonesian Agroindustry
- Biogas Technology in Vietnam
- Biogas for the Small Holdings in Kerala, India
Energy Source-Wind and Hydro Power
Hydropower
Wind Power
Financing and Business Models
- Agri-Food Enterprises in the Energy-Food Nexus
- Business Plan for Solar Processing of Tomatoes
- Small Scale Oil Seeds Processing
- Techno-Economic Analysis in the Agricultural Value Chain
- Comparative Financial Analysis of Irrigation Solutions
Policies and Regulations
- Policies and Regulations for the Energy-Agriculture Nexus
- Comparison of various Policy Tools for Promoting Renewable Energies
- Bioenergy Decision Support Tool
Value Chain
Dairy
- Food Safety Laboratory and Milk Quality Improvement Program (College of Agriculture and Life Sciences Cornell University)
- Clean Energy Solutions for Milk Cooling in India and Kenya
- Biogas Milk Chilling for Dairy Farmers
- Biogas-Powered Evaporative Cooling for the Dairy Industry
- SunDanzer: Solar Powered Refrigeration for Kenyan Dairy Farms
- Reducing Milk Spoilage through Solar-Powered Chilling
- Solar Milk Cooling with Insulated Milk Cans
Rice
- Ricepedia
- IRRI Axial Flow Thresher
- RiceHub
- Solar Agro-Processing Power Stations
- Biomass and Solar PV Hybrid Minigrids for Off-Grid Farming Communities
- Costs and Benefits of Clean Energy Technologies in the Philippines’ Rice Value Chain
Fruit & Vegetables
- Waste Stitching – Circular Economy
- SunChill Solar Cooling for Horticultural Preservation
- Tomato Processing by Solar Energy
- Water and Food Security – FAO
Water Use in Agriculture
- FAO Water– The Importance of Sustainable Water Management
- Water in Agriculture World Bank
- Do Solar Powered Irrigation Systems (SPIS) Contribute to the Overexploitation of Groundwater Reserves
- SPIS Toolbox on Solar Powered Irrigation Systems
- SPIS|Toolbox – Understanding Groundwater
- SPIS Safeguard Water Module
- SPIS Toolbox -Understand Water Resources
- SPIS Toolbox -Assess Environmental and Socio-Economic Impacts
- SPIS Toolbox - Irrigation Efficiency Tips